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Abstract

We propose a causal framework for applications where the outcome of interest is a unit-specific
response to events, which first needs to be measured from the data. We suggest a two-step proce-
dure: first, estimate unit-level event studies (ULES) by comparing pre- and post-event outcomes of
each unit to a suitable control group; second, use the ULES in causal analysis. We outline the theo-
retical conditions under which this two-step procedure produces interpretable results, highlighting
the underlying statistical challenges. Our method overcomes the limitations of regression-based ap-
proaches prevalent in the empirical literature, allowing for a deeper examination of heterogeneity
and dynamic effects. We apply this framework to analyze the impact of childcare provision reform
on the magnitude of child penalties in the Netherlands, illustrating its ability to reveal nuanced
positive relationships between childcare provision and parental labor supply. In contrast, tradi-
tional regression-based analysis delivers negative effects, thereby emphasizing the benefits of our
two-step approach.
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1 Introduction

Numerous empirical questions focus on how economic outcomes respond to various events,
such as changes in the environment (e.g., labor market shocks) or personal decisions (e.g.,
becoming a parent). To answer these questions, researchers routinely conduct event studies,
comparing units that have experienced the event with those that have not yet experienced it.
These comparisons are then aggregated to produce a summary that can be easily visualized
using event-study plots (e.g., Freyaldenhoven et al., 2021). For many applied questions, this
summary is the final object of interest, and no further analysis is necessary. For example, if the
original event corresponds to a policy change, the event-study plot describes the policy’s im-
pact. However, suppose we are interested in how different policies shape reactions to events.
For instance, we want to understand how changes in childcare provision affect changes in
individual labor-market outcomes after having children. To answer such questions, we would
like to leverage the variation in the underlying unit-level event studies, connecting it to ob-
served policy changes or, in other words, to conduct causal analysis using the event studies as
the outcome of interest.

This paper presents a practical framework for systematically exploring unit-specific reac-
tions to events and using them to conduct causal analysis. By connecting results from the
econometric panel data literature with advances in the causal inference literature, we pro-
vide a toolkit that enables researchers to estimate unit-level reactions and use them to answer
causal questions.1 To demonstrate the practical value of our approach, we apply it to a specific
empirical question—the study of child penalties (CPs) and their relationship with childcare
provision—and illustrate how it outperforms current methods in this field.

We start from a long-standing observation in the econometric panel data literature (Arel-
lano and Bonhomme, 2012; Bonhomme and Sauder, 2011; Borusyak et al., 2024b; Chamber-
lain, 1992; Graham and Powell, 2012). Suppose we compare a given unit before and after
an event with the average of appropriate control units. As long as the parallel trends assump-
tion holds, these comparisons yield unbiased, though noisy, estimators for unit-level effects,
which we refer to as unit-level event studies (ULES). The main proposal of this paper is to di-
rectly incorporate these unit-specific measures into the causal analysis, resulting in a two-step
procedure: measurement of ULES and the utilization of estimated ULES in the causal analysis.

Many applied researchers already recognize the opportunities presented by the unit-level
variation; however, they lack a systematic method for exploring this variation. For instance, a
common question in the CP literature focuses on how childcare provision policies impact the
magnitude of child penalties (Andresen and Nix, 2022a; Kleven et al., 2024; Lim and Duletzki,

1We provide an online tutorial to ease adoption of the two-step approach:
https://kazuyanagimoto.com/unitdid/
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2023; Rabaté and Rellstab, 2021). Rather than using the two-step procedure we recommend,
researchers rely on ad hoc modifications of standard regressions, interacting policy variation
with event indicators. This one-step procedure leads to at least three potential issues. First, it
limits the types of questions researchers aim to address. For example, as we demonstrate in
the context of the CP, conventional regressions do not allow users to differentiate between the
contemporaneous and dynamic effects of childcare expansion policies. Second, it constrains
the analyses researchers can conduct for a given question and the variation they can examine.
Specifically, researchers often arbitrarily discretize the underlying rich policy variation (e.g.,
low versus high levels of childcare expansion) to be able to use conventional regression spec-
ifications. Finally, the current practice can lead to incorrect conclusions. We illustrate this in
our empirical application, where the commonly used one-step procedure yields quantitatively
and qualitatively different answers compared to our two-step strategy.

In theory, for a given problem, it is often possible to combine the two-step procedure we
propose into a single-step regression procedure. However, in practice, there are several advan-
tages to separating the tasks of measuring ULES and conducting causal analysis rather than
trying to implement them simultaneously. For example, applied researchers frequently explore
various specifications in their analysis. By dividing the analysis into two steps, we can ensure
that the empirical strategy in the causal analysis phase does not impact how we measure the
ULES. Additionally, some popular techniques depend on statistical methods that involve regu-
larization, which may introduce nonlinearities (e.g., LASSO). Empirical economists frequently
use these methods when outcomes are readily available, and our approach enables researchers
to apply these same tools in situations with constructed outcomes — ULES. Finally, as we il-
lustrate in the paper, even in the most straightforward problems, designing the appropriate
one-step procedure is not trivial, and natural proposals can lead to incorrect answers. Using
our approach, researchers can increase the transparency and flexibility of the analysis.

One immediate concern regarding our recommendation is that the constructed unit-specific
measures are noisy, and the regression-based analysis that uses such variables may suffer from
measurement error bias. We argue that this bias in the measurement step does not impact
the causal analysis under standard assumptions. For example, this holds in our empirical
application, in which the childcare provision policy varies across municipalities. Intuitively,
when analyzing such policies, we need to aggregate unit-level estimates to reflect the level of
policy variation, and this aggregation eliminates measurement error in individual-level child
penalties.

The second, more nuanced concern is that we can construct ULES only for a selected sub-
sample of units: those that experienced the event. This inherent feature of the analysis leads to
sample selection issues, which could undermine causal identification. By dividing the analysis
into two steps, we compel researchers to address it explicitly, thereby increasing the trans-
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parency and credibility of the analysis. In contrast, conventional regression procedures ob-
scure the sample selection problem, making it easier for researchers to overlook it. We present
two alternative assumptions under which the selection concerns can be addressed. The first
one assumes away the causal link between the policy of interest and the timing of the event.
We argue that this assumption is reasonable within the context of our application and provide
empirical evidence to support this claim. However, in applications where this assumption is
less reasonable, we offer researchers an alternative restriction, positing that the counterfactual
event times and ULES are independent. This assumption is suitable in applications where event
times are (quasi) random, such as when determined in an experiment with a policy-dependent
design.

We apply our method to study how CPs are affected by a large childcare expansion in the
Netherlands. We employ a comprehensive dataset from Statistics Netherlands (CBS) that en-
compasses various sources, including the census, residential registry, and employment records,
all linked through anonymized identifiers by CBS. Our primary data come from employer-
employee monthly records from 1999 to 2016, which detail employment statuses and wages.
We merge demographic information on birth year, gender, timing of parenthood, and educa-
tion records for the highest diploma obtained.

We begin our empirical analysis by constructing individual-specific CP estimates. We con-
duct a basic exploratory analysis to understand the variation in these estimates and demon-
strate how to use the estimated ULES to assess the validity of the statistical model. We find
supporting empirical evidence for the model’s limited anticipation assumption across all com-
binations of education, gender, and age of first birth, with one exception: college-educated
individuals, for whom the model is suitable only for those who have children later in life, be-
yond the age of 30. Driven by this model validation exercise, we impose this additional sample
restriction for the remainder of our analysis.

We continue our analysis by illustrating how ULES can serve as an outcome of interest
in causal analysis. Specifically, we examine the effect of the 2005 to 2010 Dutch childcare
provision expansion on parent-level estimates of the CP in earnings and employment, using
variations in childcare services and availability across municipalities and time. To highlight
the significance of the dynamic effects of the policy expansion, we analyze both the level of
childcare expansion during the period before childbirth (henceforth “baseline levels”) and the
levels of contemporaneous childcare provision as the child grows up (henceforth “contempo-
raneous levels”). While contemporaneous levels of childcare provision increase mothers’ earn-
ings, baseline levels impact only higher-educated mothers in the medium term, 3 to 5 years
post-birth. In contrast, fathers’ earnings and participation are influenced solely by baseline
levels. Furthermore, we discover that more educated parents benefit more from the childcare
expansion.
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These heterogeneous policy effects may provide insights into the economic mechanism
underlying the relationship between childcare provision and labor supply. For example, one
economic interpretation of these results could be via the role of job flexibility and nonlinear
wage structure, which may vary by education level.2 Childcare expansion disproportionately
benefits highly educated women if their jobs have more demanding work-hour requirements
(e.g., lawyers), thereby amplifying the impact of childcare availability on their labor market
outcomes.

The effect of expansion policies for childcare provision on the CP has recently been stud-
ied, with a wide range of results, ranging from null to very large effects (Andresen and Nix,
2022a; Castellanos, 2024; Kleven et al., 2024; Lim and Duletzki, 2023; Rabaté and Rellstab,
2021). Although these varying results might be simply due to different contexts of the reform
studied, they may very well be the result of an inflexible empirical specification. Compared
with the typical regression analysis in the literature, we approach this question more flexibly
by splitting the measurement and policy evaluation steps, which demonstrates the strength
of our two-step approach. Typically, both the CPs and their reaction to policies are estimated
within a single regression augmented with pre-post policy indicators interacted with binary
exposure measures. Such specifications raise several concerns. First, in practice, a policy vari-
ation is often continuous (e.g., the increase in childcare provision) rather than binary. Applied
researchers often binarize it, thus ignoring essential information we can use directly. Second,
common one-step specifications abstract away from dynamic effects, which we find in our ap-
plications. Finally, these specifications suffer from aggregation issues and contamination bias
(Goldsmith-Pinkham et al., 2024).

Our paper makes both a methodological and empirical contribution. The first step of our
analysis—the measurement of ULES—integrates prior results from the econometric panel data
literature (Arellano and Bonhomme, 2012; Chamberlain, 1992; Graham and Powell, 2012)
with recent studies on event analyses (Borusyak et al., 2024b) to create a simple yet flexible
algorithm suitable for all event studies. From an algorithmic perspective, we build on the esti-
mation approach proposed by Borusyak et al. (2024b); however, our measurement framework
provides enough flexibility for users to incorporate alternative estimation methods, including
those based on Callaway and Sant’Anna (2021) and Sun and Abraham (2021). The second
step of our analysis—policy evaluation—combines concepts from modern causal panel data
literature (see Arkhangelsky and Imbens (2024) for a recent survey) and the design-based
literature (see Borusyak et al. (2024a) for a recent survey) and demonstrates how to apply

2Goldin (2014) defines linear jobs as ones that show a proportional relationship between hours worked and
wages, allowing for greater flexibility in scheduling. Nonlinear jobs, in contrast, feature convex wage schedules,
and impose significant penalties for reducing working hours. The convex structure is commonly a result of a need
in specialization, which implies highly educated women are more inclined to pursue them, while lower-educated
women tend to remain in linear jobs.
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them in situations in which the outcome of interest is not directly available but is measured
with error and only for a selected subsample.

The concept of using the two-step procedure to project individual-specific estimates on
cross-sectional regressors of interest has a long tradition in panel data econometrics (Arel-
lano and Bonhomme, 2012; Chamberlain, 1992). Our methodological contribution is to ex-
pand these ideas to scenarios where the second step aims to uncover a causal relationship,
highlighting the challenges inherent in this process. Specifically, we argue that the problems
emphasized in the econometric literature—the correlation between unobserved heterogeneity
and regressors—play a less significant role in causal analysis, while issues of sample selection
and contamination bias become central.

Creating unit-level measures from appropriately transformed data also has a long-standing
tradition in causal inference. Early work by Robinson (1988) demonstrated how to use trans-
formed outcomes and regressors to construct efficient estimators in partially linear models.
More recently, these concepts have been adapted within the causal inference literature, with
applications related to heterogeneous treatment effects and their summaries (Chernozhukov
et al., 2018, 2023; Kennedy, 2023; Nie and Wager, 2021; Semenova and Chernozhukov,
2021), as well as policy learning (Athey and Wager, 2021). See Foster and Syrgkanis (2023)
for a comprehensive overview and numerous additional references. Our proposal adapts sim-
ilar ideas to event-study settings and identifies further challenges that must be addressed in
this context. Importantly, unlike the existing literature, we use these objects to conduct an
additional layer of causal analysis rather than to explore heterogeneity in treatment effects.
Compared to prior literature, a key limitation of our statistical analysis is its focus on discrete
covariates.

On the empirical side, this paper contributes to the CP literature in several ways. First, it
highlights the heterogeneity of CP among individuals, complementing and expanding a body
of research that has predominantly focused on aggregate penalties. Previous studies have con-
sistently shown that women experience significant CP after birth, with recovery being partial
(Angelov et al., 2016; Gallen, 2019; Kleven et al., 2019). However, emerging literature in-
dicates potential heterogeneity in penalties: Women who express a preference for having a
child may not face such penalties (Bensnes et al., 2023; Lundborg et al., 2024), and it has
been demonstrated that CP estimation is sensitive to the timing of the first birth, the spacing
of births, and parental leave policies (Adams et al., 2024). In response to this concern, we
adjust the standard CP estimation to accommodate unobserved heterogeneity and differen-
tial trends for subgroups of interest. Second, we explore the mixed evidence regarding the
effects of expanding childcare policies on CP (Andresen and Nix, 2022b; Castellanos, 2024;
Karademir et al., 2024; Kleven et al., 2024; Lim and Duletzki, 2023; Rabaté and Rellstab,
2021). Our flexible two-step approach helps fill this gap by demonstrating how the common
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one-step approach leads to qualitatively different conclusions. Furthermore, we emphasize
the importance of dynamics in studying childcare expansion policies.

The remainder of the article is organized as follows. In Section 2, we formally introduce the
econometric framework for estimating and using the unit-level measures in causal analysis.
Section 3 applies the measurement step to the CP and discusses the data and sample selection.
Section 4 illustrates how unit-level estimates can serve as an outcome of interest in policy
evaluation exercises, particularly in the context of childcare provision policies, and compares
our results from the two-step approach with the common one-step approach found in the
literature. Section 5 concludes.

2 Econometric framework

This section outlines the methodological concepts underlying our empirical analysis using a
stylized model. The model builds on ideas from previous literature on linear panel data mod-
els with random coefficients, particularly Arellano and Bonhomme (2012), as well as more
recent studies on heterogeneous treatment effects in event studies, especially Borusyak et al.
(2024b). The methodological contribution of this section is to connect these ideas to a broader
causal analysis, detailing the conditions under which unit-level estimates can be used for pol-
icy evaluation. We introduce the measurement framework, present the causal problem and
our solution, and discuss statistical aspects. We opt for a less formal presentation to strike a
balance between readability and rigor, with Appendix B providing technical details, formal
results, and extended discussions.

2.1 Measurement model

We start with a model that illustrates how to measure the responses of units to a specific event.
These measurements, termed “unit-level event studies,” will lay the groundwork for the causal
analysis outlined in this section.

Consider a population of units observed over three periods, t ∈ {0, 1, 2}. For each unit
i, we have a set of outcomes (Yi,0, Yi,1, Yi,2) and an event time Ei ∈ {1, 2,∞}. Each unit
i belongs to a group g(i), which is observable. The event time Ei indicates the period in
which the unit experienced a specific event, potentially reflecting a policy change or individual
decision depending on the context, with Ei set to ∞ if the event did not occur during the
observation period. Depending on the application, group g(i) may represent a geographic
location, a classroom, a firm, an economic market, etc. We use a model with only three periods
to discuss key challenges in identification, estimation, and inference in the simplest setting; in
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Appendix B, we extend the model to allow for multiple periods, event times, and additional
covariates.

We assume the outcomes evolve according to a strictly exogenous linear panel data model
with unit and group-specific parameters:

Yi,t = αi + λg(i),t +
∑
h≥0

τ ei,h1{Ei = e}1{t− Ei = h}+ εi,t,

Eg(i)[(εi,0, εi,1, εi,2)|αi, τ
1
i,0, τ

1
i,1, τ

2
i,0, Ei] = 0.

(1)

We interpret (1) as a system of measurement equations about the latent parameters of interest,
τ 1i,0, τ

1
i,1 and τ 2i,0.3 Note that τ ei,h is indexed by both the event time e, thus allowing for state

dependence, and horizon h, thus allowing for dynamics. To simplify notation, we define τi,h :=

τEi
i,h . The difference between τi,h and τ ei,h is that the latter object corresponds to the fixed event
time e and the former to the random event time Ei. For every unit with Ei = 1 and horizon
h ∈ {0, 1}, we define a unit-level measurement:

τ̂i,h := Yi,1+h − Yi,0 − (λg(i),1+h − λg(i),0) = τi,h + ν1
i,h,

where ν1
i,h := εi,1+h − εi,0. Similarly for units with Ei = 2, we define:

τ̂i,0 :=

(
Yi,2 −

Yi,1 + Yi,0

2

)
−
(
λg(i),2 −

λg(i),1 + λg(i),0

2

)
= τi,0 + ν2

i,0,

where ν2
i,0 := εi,2 − εi,0+εi,1

2
.4 The moment restriction in (1) implies that each τ̂i,h is unbiased

for τi,h. As we will see in the next section, this restriction is key for using τ̂i,h in causal analysis.
For future reference we define the measurement error νi,h := νEi

i,h, which quantifies the error
we are making in measuring τi,h with τ̂i,h. We refer to τ̂i,·-s, viewed as functions of the horizon
h, as unit-level event studies (ULES).

Remark 2.1. We could interpret τ ei,h as causal objects by explicitly introducing the underly-
ing potential outcomes and making assumptions that imply the conditional moment restric-
tion; see Arkhangelsky and Imbens (2024) for a discussion of different types of assumptions
that guarantee this. Some of these assumptions imply additional properties of the measure-
ment model, which we do not explicitly consider. Instead, we follow Arellano and Bonhomme
(2012) and approach the analysis without committing to a specific interpretation of these pa-
rameters. Depending on the context, they can be viewed as causal quantities, or (1) can be

3The expectation in (1) is taken using the g-specific distribution and conditional on group-level shocks; see
Appendix B.1 for the formal definition of the underlying probability model.

4In model (1) the differences in the time fixed effects are identified from the differences in outcomes for units
that have not experienced the event yet, e.g., λg(i),1 − λg(i),0 = Eg(i)[Yi,1 − Yi,0|Ei > 2].
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seen as a statistical model defining the latent parameters.

Remark 2.2. The measurements τ̂i,h are constructed using specific transformations of the unit-
level outcomes Yi,0, Yi,1, Yi,2 to deliver an unbiased signal about τi,h. Other unit-level transfor-
mations also achieve the same goal, e.g., we can use a weighted average instead of the simple
average of the pre-event outcomes. For instance, for units with Ei = 2 we can use Yi,1 or Yi,0

instead of Yi,1+Yi,0

2
to adjust for αi. This choice affects statistical efficiency, with the simple

average being efficient if the variance of εi,t is constant over t and the errors are uncorrelated.

2.2 Causal framework

Suppose researchers are interested in a policy intervention Wg that varies at the group level.
Such interventions are common in empirical practice, arising in experimental studies in which
Wg is randomly assigned at the group level, as well as in observational studies in which imple-
mented policies naturally differ among groups. Unlike the typical policy evaluation problem,
the outcome of interest is not directly observed; instead, it must be measured using system
(1). For instance, in our empirical example, τ ei,h will represent the change in a person’s income
after they become a parent in period e, while Wg(i) will indicate this parent’s exposure to a
childcare expansion policy.

To formalize the notion of causality, we interpret the observed data as realizations of the
underlying potential outcomes (see Imbens and Rubin (2015) for a textbook treatment):

Yi,t = Yi,t(Wg(i)), Ei = Ei(Wg(i)).

We connect the potential outcomes Yi,t(w) to the underlying counterfactual latent parameters:

Yi,t(w) = αi(w) + λg(i),t(w) +
∑
h≥0

τ ei,h(w)1{Ei(w) = e}1{t− Ei(w) = h}+ εi,t(w).

This notation implies that while the policy intervention affects all system components, it does
not change the structure of the measurement model itself.5 To attach meaning to this decom-
position, we impose the moment conditions on the counterfactual quantities:

E[εi,0(w), εi,1(w), εi,2(w) |αi(w), τ
1
i,0(w), τ

1
i,1(w), τ

2
i,0(w), Ei(w)] = 0. (2)

Adopting the standard convention, we drop the dependence of w to describe the realized
5In some applications, researchers might impose additional restrictions on the causal model. For instance, if

Wg describes a path of a policy that evolves over time, then it is natural to assume that αi(w) does not depend
on w.
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variables:

αi := αi(Wg(i)), λg(i),t := λg(i),t(Wg(i)), τ ei,h := τ ei,h(Wg(i)), εi,t := εi,t(Wg(i)).

We use the fact that Wg(i) varies at the group level and the moment restriction (2) to arrive at
model (1), which allows us to define τ̂i,h in the same way as before.

We now introduce the main counterfactual object of our causal analysis:

τi,h(w) := τ
Ei(w)
i,h (w).

In principle, this quantity is affected by w along two distinct margins. First, there is a direct
effect of w on τ ei,h(w) for a given event time e and horizon h. Second, there is an indirect
effect of w through the changes in the potential event time Ei(w). For example, expanding
the childcare provision might affect both the child penalty and the timing of having a child.
Following the notation introduced in the previous section, we use τi,h to denote the realized
potential outcome:

τi,h := τi,h(Wg(i)).

The properties of τ̂i,h ensure that it provides an unbiased signal for τi,h, with the measurement
error νi,h being uncorrelated with any function of Wg(i) by construction.6 This suggests using
ULES for causal analysis, which we focus on in the next section.

2.3 Identification

Once we have constructed the ULES, we can use these quantities as the outcomes of interest in
causal analysis, which is the primary focus of this article. The specific nature of this exercise
should depend on the assumptions regarding the variation in Wg. For instance, if researchers
control the assignment of Wg, the analysis will be significantly simplified. However, we must
confront the unavoidable sample selection problem even in such cases. By definition, we ob-
serve τ̂i,h only for selected subpopulations; specifically, we can construct τ̂i,0 only for units with
Ei < ∞. This issue becomes even more critical when comparing units with different event
times—a necessity in observational studies where researchers do not control the assignment
of Wg.

To resolve the sample selection problem, we restrict the underlying causal model. We
consider an assumption that allows for two options:

either (a) Ei(w) ≡ Ei, or (b) Ei(w) ⊥⊥ τ ei,h(w) within group g(i). (3)
6This is guaranteed because the errors εi,t(w) have zero mean within each group; see Appendix B.1 for

technical details.
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Restriction (a) is natural in applications in which event times are not expected to respond to
the policy of interest. This assumption is plausible if the observed distribution of Ei remains
unchanged in relation to Wg(i), which—as we will argue in Section 4.3—is the case in our
empirical application. This restriction automatically resolves the selection problem because Ei

is not affected by the policy.
A large class of applications involves event times responding to policies, which leads us

to consider an alternative restriction (b) that eliminates the dependence between Ei(w) and
τ ei,h(w) at the group level. In this scenario, while the selection problem persists, it can be
addressed by conducting appropriate empirical analysis. This assumption is automatically
fulfilled if Ei(w) is assigned randomly according to a group-specific distribution, as in a ran-
domized experiment.

This discussion highlights a crucial practical benefit of separating measurement from causal
analysis. The explicit construction of ULES brings the selection problem to the forefront, forc-
ing researchers to confront it. Conventional one-step methods that bypass the explicit mea-
surement step obscure the selection issue, diminishing transparency and potentially leading
to incorrect conclusions.

Remark 2.3. Assumption (3) covers a broad range of applications; however, there are em-
pirical problems for which it is unreasonable. In such situations, researchers have multiple
options. One option is to conduct an unconditional analysis—for example, by altering the
outcome of interest from τi,0 to τi,01{Ei < ∞}. An alternative approach would be to address
the selection problem directly by either constructing bounds, as outlined by Lee (2009) or by
imposing additional structure on the joint distribution of Ei(w) and τi,h(w) using a correlated
random effects model. The latter methods necessitate further assumptions, which we do not
elaborate on in this paper.

Known distribution of Wg

To see the implications of Assumption (3) more formally, suppose that Wg ∈ {0, 1} and is
assigned randomly across groups with probability 1

2
, which is known to the researcher. In this

case, we can rely on inverse probability weighting at group level to conduct the causal analysis.
Specifically, we need to multiply group-level outcomes by the weights Wg

0.5
− 1−Wg

0.5
= (4Wg − 2).

This leads to the following two computations. If part (a) of (3) is satisfied, then we have

E
[
(4Wg(i) − 2)τ̂i,01{Ei < ∞}

Eg(i)[1{Ei < ∞}]

]
= E[(4Wg(i) − 2)τi,0(Wg(i))|Ei < ∞] =

E[τ 1i,0(1)− τ 1i,0(0)|Ei < ∞].
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Here the first equality follows from the fact that when τ̂i,0 is available—hence conditioning on
Ei < ∞—it is an unbiased estimator of τi,0(Wg(i)) for each group. The second equality follows
from the random assignment of Wg(i) across groups.

Alternatively, if part (b) of (3) is satisfied, then we have for e ∈ {1, 2}

E
[
(4Wg(i) − 2)τ̂i,01{Ei = e}

Eg(i)[1{Ei = e}]

]
= E

[
(4Wg(i) − 2)τ ei,0(Wg(i))1{Ei(Wg(i)) = e}

Eg(i)[1{Ei(Wg(i)) = e}]

]
=

E[(4Wg(i) − 2)τ ei0(Wg(i))] = E[τ ei,0(1)− τ ei,0(0)].

In this case, the first equality again uses the unbiasedness property of τ̂i,0, the second follows
from Ei(w) being independent of other potential outcomes within the group, and the last one
relies on Wg being randomly assigned.

These computations illustrate two important differences between the restrictions in (3). In
the first case, the analyst does not need to fix a particular event time to compute the policy’s
impact.7 However, the resulting estimand describes the effects for a selected subpopulation
within each group, similar to the average effect on the treated. In the second case, the analysis
must be done separately for each event time to account for selection. Meanwhile, the derived
effect corresponds to the average treatment effect for the entire group. As we will show below,
the two restrictions also have different implications for statistical estimation.

The above analysis can be generalized to environments in which Wg is randomly assigned
based on observed group-level covariates or has a more complicated non-binary structure. As
long as Assumption (3) is satisfied and the distribution of Wg can be learned, researchers can
use the machinery developed by modern cross-sectional causal inference literature, including
recent proposals such as the automatic debiased machine learning described by Chernozhukov
et al. (2022). Similarly, we can use IV or regression-discontinuity identification strategies,
which rely on between-group comparisons.

Unknown distribution of Wg

In empirical practice, it is common for policy variation not to be controlled by the researcher
and to have an unknown group-specific distribution. In such situations, we cannot disentangle
the effect of the policy from the spurious correlation in the data without additional assump-
tions. This issue can be resolved only on a case-by-case basis, and the approach we present
below is motivated by our application. Nevertheless, we believe it is flexible enough to ad-
dress many empirical problems. Importantly, it also generalizes the one-step regressions used
in practice, which we discuss in Section 4.4.

7The first computation remains valid for a fixed value of Ei = e, which results in a different estimand
E[τ1i,0(1)− τ1i,0(0)|Ei = e].
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Suppose Wg(i) = (Wg(i),0,Wg(i),1,Wg(i),2)—that is, each group has a particular policy path.
In our application, each Wg,t describes the level of childcare provision in municipality g in
calendar period t. We assume that only part of the policy path is relevant to the current
potential outcomes and the effect is linear:

τ ei,h(w0, w1, w2) = βe
i,0 + δbase,0we−1 + δcont,0we+h. (4)

Here, we−1 and we+h correspond to the baseline level of the policy before the event and the
current level, respectively. Restriction (4) implies that the effect of past policies is homoge-
neous across time and groups. This assumption can be relaxed at the expense of additional
restrictions, which we discuss at length in Appendix B.3. Note that we leave βe

i completely
unrestricted, and it can systematically vary over groups and event times. Below we focus on
τi,0 because we can construct τ̂i,0 for units with various event times, unlike τ̂i,1. In our empirical
application, we consider all horizons.

Next, we restrict the probability model for Wg,t and assume

E[Wg,t] = ag + bt. (5)

This assumption is reminiscent of those invoked in the recent design-based IV literature (e.g.,
Borusyak and Hull, 2023, 2024; Borusyak et al., 2024a), as well as the recent literature on
linear regression (Goldsmith-Pinkham et al., 2024). It allows us to use the variation in differ-
ences∆Wg,t := Wg,t−Wg,t−1 as an instrument because this variation does not have a systematic
group-specific component. The group-specific component of E[Wg,t], ag, is eliminated by the
transformation ∆W g(i), and the common mean E[∆W g(i)] = b2 − b1 can be consistently esti-
mated by pooling the data across groups.

To understand the underlying mechanics, define

∆τ̂i,0 :=
τ̂i,01{Ei = 2}

Eg(i)[1{Ei = 2}]
− τ̂i,01{Ei = 1}

Eg(i)[1{Ei = 1}]
,

and ∆W⊤
g(i) := (Wg,2 −Wg,1,Wg,1 −Wg,0). Observe that we have

E
[
∆τi,0

(
∆W g(i) − E[∆W g(i)]

)]
=

E

[(
∆W g(i) − E[∆W g(i)]

) (( β2
i,01{Ei = 2}

Eg(i)[1{Ei = 2}]
−

β1
i,01{Ei = 1}

Eg(i)[1{Ei = 1}]

)
+

∆W⊤
g(i)δ0

)]
= V[∆W g(i)]δ0,
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where δ⊤
0 := (δcont,0, δbase,0). Combining the above moment across groups, we can construct a

consistent estimator for δ0. The next section will discuss a particular regression estimator that
implements this strategy.

Remark 2.4. Restriction (5) is quite specific and may not be suitable for all applications. In
Appendix B.3, we discuss alternative restrictions on the mean, particularly those that allow
for a factor model. The overall logic remains the same: As long as there exists an identifiable
transformation of the policy path such that its mean is invariant across groups, we can use it
for identification.

Remark 2.5. The restriction (5) is reminiscent of assumptions on the propensity score that
are common in the literature on design-based causal identification. At the same time, in the
policy evaluation literature, it is common to use the model-based approach, keeping the mo-
ments of Wg,t unrestricted while imposing structure on the residual term βe

i,h. We discuss this
alternative strategy in Appendix B.5. We argue that our estimator remains valid under a spe-
cific version of the parallel trends assumption (analogous to the one used by De Chaisemartin
and d’Haultfoeuille, 2020), even if restriction (5) fails. This double robustness identification
property is closely related to the results established by Arkhangelsky and Imbens (2022);
Arkhangelsky et al. (2024a); see also Borusyak and Hull (2024).

2.4 Statistical analysis

This section explores the practical implementation of the ideas discussed earlier. We cover
estimators for the measurement step, policy analysis, and the validation of the underlying
models.

Measurement

The measurement model in Section 2.1 is overidentified, and thus we can use various proce-
dures for estimation. In our empirical application that features multiple treatment periods, we
rely on the imputation estimator developed by Borusyak et al. (2024b), which we review in
Appendix B.4. In the context of the example in this section, this estimator has a straightfor-
ward structure for τ̂i,0 that reduces to the standard difference-in-difference (DiD) estimator at
group level:

τ̂BJS
i,0 =

(
Yi,Ei

− 1

Ei

∑
l<Ei

Yi,l

)
−

∑
j:Ej>Ei,g(j)=g(i)

(
Yj,Ei

− 1
Ei

∑
l<Ei

Yj,l

)
∑n

j=1 1{g(j) = g(i), Ej > Ei}
,
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which can be constructed for units with Ei < ∞.8 We can immediately see the connection
between τ̂BJS

i,0 and τ̂i,0:

τ̂BJS
i,0 = τ̂i,0 +

∑
j:Ej>Ei,g(j)=g(i)

(
εj,Ei

− 1
Ei

∑
l<Ei

εj,l

)
∑n

j=1 1{g(j) = g(i), Ej > Ei}
= τ̂i,0 + ξi,0, Eg(i) [ξi,0|Ei] = 0.

We will refer to ξi,h as the estimation error to differentiate it from the measurement error νi,h
discussed earlier. Unlike the measurement error, the estimation error is negligible when the
number of relevant units in the group is large. Since we focus on the analysis where τ̂BJS

i,h

serves as the dependent variable, these errors do not introduce bias. However, this changes
if we intend to use τ̂BJS

i,h as an independent variable, where the measurement error becomes
important for identification.9

The computation above highlights an additional issue that we ignored in the identification
analysis of the previous sections. For a given group g, we can estimate the ULES only if there
is variation in event times within the group—an overlap condition. If all the groups are large,
such variation will likely exist for each of them. However, if the groups contain only a few units,
then the overlap is likely to fail for a significant portion of the groups. Whether the failure of
overlap poses a problem depends on which aspect of Assumption (3) we depend on. Suppose
the analysis relies on part (a); in that case, we can disregard the groups for which we cannot
construct τ̂BJS

i,0 , and this type of sample selection does not introduce additional challenges for
the policy evaluation step, although it does influence the estimand we can construct. However,
if the analysis depends on part (b) of Assumption (3), then focusing on the groups for which
the overlap holds introduces a group-level sample selection problem acting as a “bad control”
(Angrist and Pischke, 2009).

We want to emphasize that this issue is relevant only when the groups are small. For a
given group, the probability of overlap failing decreases exponentially with the number of units
within the group. This guarantees that the selection problem is statistically inconsequential if
the number of units in each group is sufficiently large.

Policy analysis

Once estimated ULES are available, researchers can use them for policy analysis. The nature
of this exercise depends on the variation we can employ and the type of assumptions we are
willing to accept regarding the underlying causal model. In our discussion below, we focus on
the case of an unknown distribution of Wg, while assuming the restrictions introduced in the

8See Arkhangelsky and Samkov (2024) for the relevant derivations.
9The earlier version of this paper, Arkhangelsky et al. (2024b), which is available on arXiv, discusses this in

detail.
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previous section. Our general results (see Appendix B.3.1) can be used to construct estimators
for applications where the distribution of Wg is known.

Suppose we assume that part (a) of Assumption (3) holds. Then researchers can use the
following estimator:

({µ̂OLS
g }g, {β̂OLS

e }e, δ̂OLS
base , δ̂

OLS
cont ) :=

arg min
{µg}g ,{βe}e,δbase,δcont

∑
i

(
τ̂BJS
i,0 − µg(i) − βEi

− δbaseWg(i),Ei−1 − δcontWg(i),Ei

)2
, (6)

where µg and βe are the group and event-time fixed effects, respectively. These two-way
fixed effects automatically adjust for the group-level variation in the mean of Wg,t, making
(̂δOLS

base , δ̂
OLS
cont ) a consistent estimator of the coefficient of interest δ0.

Alternatively, if part (b) of (3) holds, then researchers need to use a weighted regression:

({µ̂WOLS
g }g, {β̂WOLS

e }e, δ̂WOLS
base , δ̂WOLS

cont ) :=

arg min
µg ,βe,δbase,δcont

∑
i

(
τ̂BJS
i,0 − µg(i) − βEi

− δbaseWg(i),Ei−1 − δcontWg(i),Ei

)2 1

π̂g(i)(Ei)
,

where π̂g(i)(Ei) :=
∑

j:g(i)=g(j) 1{Eg=Ei}∑n
j=1 1{g(j)=g(i)} . The weighting is needed to account for the sample

selection problem caused by the effect of Wg(i) on π̂g(i)(Ei).
In our empirical analysis, we rely on a generalization of (6) that accommodates unit-specific

covariates and multiple horizons h, which we detail and analyze formally in Appendix B.4. We
make this choice after conducting preliminary analyses suggesting that part (a) of Assumption
(3) is reasonable for our dataset. We report conventional standard errors, clustering at the
group level. In Appendix B.4, we formally demonstrate that this approach ensures correct
asymptotic inference despite measurement and estimation errors in the left-hand-side variable.
This guarantees that researchers can treat the estimated τ̂BJS

i,h as a typical outcome variable in
policy analysis while ignoring the estimation error.

Validation

We rely on the overidentifying restrictions in (1) to validate the measurement model. In par-
ticular, we have the conventional parallel trends restriction:

Eg(i)[Yi,1 − Yi,0|Ei = 2] = Eg(i)[Yi,1 − Yi,0|Ei = ∞].
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We can use this population restriction to define a group-specific error:

ν̂1
g :=

∑
i:g(i)=g,Ei=2(Yi,1 − Yi,0)∑n
i=1 1{g(i) = g, Ei = 2}

−
∑

i:g(i)=g,Ei=∞(Yi,1 − Yi,0)∑n
i=1 1{g(i) = g, Ei = ∞}

.

Under the model (1), this error has a zero mean as long as it is well defined, i.e.,

Eg

[
ν̂1
g |

n∑
i=1

1{g(i) = g, Ei = ∞} > 0,
n∑

i=1

1{g(i) = g, Ei = 2} > 0

]
= 0.

This condition provides empirical researchers with one testing restriction per group to validate
the measurement model. Regardless of which part of Assumption (3) holds, it remains valid.
In our empirical application, we validate the model by looking at averages of ν̂1

g defined by
observed covariates; see Section 3.2 for details.

Remark 2.6. As long as the number of units in each group is large, ν̂1
g is approximately normal,

andwe can use the conventional t-statistic at the group level (with the standard error estimated
by within-group bootstrap or analytically). When, in addition, the number of groups is large,
all ν̂1

g will be approximately jointly normal as long as the conditions of the appropriate high-
dimensional CLT hold. In this case, we can use aggregate statistics, such as maxg |ν̂1

g |, to test
the moment restriction. We can rely on multiplier bootstrap to compute the corresponding
critical values. See Chernozhukov et al. (2017) for details and technical requirements for the
high-dimensional CLT.

2.5 Discussion

In this section, we discuss three key aspects of our approach. First, we emphasize its advan-
tages over one-step procedures that do not differentiate between measurement and causal
analysis. Second, we examine the significance of group-level policy variation, contrasting it
with instances where this variation occurs at the unit level. Finally, we discuss our results
within the context of the econometric literature, underscoring the additional nuances intro-
duced by our emphasis on causal analysis.

One- vs. two-step approach

The construction of τ̂BJS
i,h is based on linear combinations of the observed outcomes. Moreover,

most methods for causal analysis are also linear in the outcome variable. Since the combination
of two linear procedures is linear, the two-step analysis can be implemented in a single step,
using weighted OLS or two-stage least squares, depending on the exact nature of the empirical
exercise. Practitioners often prefer a more straightforward one-step procedure, but, as we
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argue below, separating them can bemore prudent, transparent, and flexible inmany empirical
applications.

There are two reasons for the added flexibility of the two-step approach. First, in a typical
empirical application, researchers use different identification strategies and regression spec-
ifications for causal analysis to guarantee the robustness of the results. In this case, each
robustness check would require a different one-step procedure, adjusting the specification in
ways that do not always follow standard practice (see our example in Section 4.4). Under
the two-step procedure we advocate, the measurement step is unrelated to the identification
argument behind the causal analysis, which renders the overall analysis more transparent.
Moreover, separating the process into two steps does not affect the construction of standard
error; researchers can continue using the same clustering methods they would have used oth-
erwise. Thus, there is essentially no practical cost in using our two-step approach. Second,
the methodological literature constantly produces new identification frameworks and estima-
tors for causal analysis problems. By using our two-step approach, these frameworks and
estimators can be deployed directly without any complications.

Finally, using the two-step procedure is more prudent since constructing the correct one-
step procedure can be less straightforward than one might think. To illustrate the last problem
in the simplest setting, suppose that researchers are interested in the effect of a binary policy
variable Wg ∈ {0, 1}, which was randomly assigned at the group level with probability 1

2
. A

natural one-step procedure that comes to mind for such a setting would be to estimate the
following linear equation by OLS with fixed effects:

Yi,t = αi + λg,t +
∑
h≥0

(βh + δhWg(i))1{t− Ei = h}+ ϵi,t, (7)

interpreting the resulting OLS estimator δ̂h as the causal effect of the policy. Given that Wg is
randomly assigned, one might expect this estimator to deliver a meaningful causal effect.

In Appendix B.7, we demonstrate that if the measurement equation (1) is correctly speci-
fied and Assumption (3) holds, the estimator δ̂h (7) may not have a meaningful causal inter-
pretation even when the policy is randomly assigned.10 The reasons for this failure depend
on which part of Assumption (3) we rely on. In the case of part (a), the resulting estimator
is affected by contamination bias as introduced by Goldsmith-Pinkham et al. (2024). Con-
sequently, as long as the underlying policy effects are heterogeneous, the resulting estimator
may lack a meaningful causal interpretation. Importantly, this is the case as long as any type
of heterogeneity—across groups, event times, or calendar time—is present.

10To simplify the exposition, we consider an estimator that uses the difference Yi,t − Yi,0 to eliminate the
unit-level fixed effects rather than the event-time specific transformation. We anticipate similar results for the
standard OLS estimator.
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In the case of part (b) of Assumption (3), the problem is more severe, and δ̂h is invalid
even when there is no heterogeneity in the underlying effects of the policy. The issue arises
because when estimating (7) we use the event-time indicators, which serve as “bad controls”
introducing sample selection bias. This discussion shows that natural one-step solutions can
backfire even in the most straightforward settings. In more complicated observational studies,
researchers will likely consider a more elaborate version of regression (7), potentially intro-
ducing additional biases.

Group- vs. individual-level policy variation

Our analysis centered on policies that differ at the group level, a common scenario in many
empirical applications. These groups can vary significantly in nature, representing geographic
locations, firms, markets, and so on, with sizes ranging from thousands to just a few units.
Our framework accommodates all these situations. However, in some cases, policy variation
genuinely happens at the unit level. For instance, in the context of child penalties, one might
consider directly allocating childcare subsidies to families, creating variation at the individual
level that does not align with any specific group. Therefore, understanding the distinctions
between the two settings is crucial.

Suppose the policy Wi is randomly assigned at the individual level, and we observe many
randomly sampled units. An appropriate version of the measurement model (1) for this situ-
ation has the following form:

Yi,t = αi + λt(Wi) +
∑
h≥0

τ ei,h + εi,t, E[εi,t|Wi, Ei, αi, τ
1
i,0, τ

0
i,1, τ

2
i,0] = 0.

This model explicitly relies on the policy Wi in question. Consequently, one must either con-
sider separate measurement systems for different policies or start with a comprehensive set of
policies. The first approach presents conceptual challenges, while the second is impractical.
Naturally, one could bypass this issue by assuming that λt does not vary with Wi, but this sig-
nificantly limits the underlying causal model. This problem does not arise with policies that
vary across groups, as we can always incorporate group-level fixed effects, thereby explicitly
accounting for any group-level policy.

The previous discussion highlights the complexities of unit-level variation, but one might
wonder if it offers any advantages, in particular, if the natural one-step methods now perform
better. In Appendix B.7 we consider estimation of a linear equation

Yi,t = αi + λt(Wi) +
∑
h≥0

(βh + δhWi)1{t− Ei = h}+ ϵi,t, (8)
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using OLS. We demonstrate that the resulting estimator δ̂h generally lacks causal interpreta-
tion, suffering from selection issues and contamination biases.

The final distinction between the two cases lies in the approach to inference. With group-
level policy variation, one can disregardmeasurement and estimation errors and rely on group-
level clustering. This presents a significant practical advantage, allowing users to treat esti-
mated quantities as data. However, this logic is no longer valid when the policy varies across
units. In such instances, we must explicitly address the correlation in τ̂BJS

i,h introduced by the
estimation errors. Depending on the application, this can be straightforward, such as when
the analysis can be completed in one step, as previously described, or it may require additional
computations.

Given our focus on group-level variation, one could argue that there is no need to estimate
unit-level event studies (ULES); instead, we can directly measure group-level parameters. We
focused on the unit-specific analysis for three reasons. First, unit-level analysis is important
when units differ in their observed characteristics, and we need to control for that in the
causal analysis. This flexibility comes at no practical cost, making it an attractive default
option. Second, by using unit-level outcomes in regressions, we automatically weigh group-
level quantities according to the number of units in each group—, a commonly used strategy
with group-level data. Finally, ULES allows us to study persistence patterns in τi,h at the
expense of additional assumptions.11 While we do not attempt such analysis in our empirical
application, other researchers might find it useful.

Causal analysis vs. projections

Existing econometric literature shows that conventional one-step regressions do not recover
meaningful parameters in models with unobserved heterogeneity, such as our measurement
model (1). This argument was presented by Chamberlain (1992), who focused on estimating
the mean, and was further elaborated by Arellano and Bonhomme (2012), who investigated
the estimation of arbitrary projections of unobserved heterogeneity. The econometric concerns
regarding one-step regressions are well-understood: The unobserved heterogeneity may be
correlated with the regressors; for example, τ ei,h could be correlated withEi. By conducting the
analysis in two steps, researchers explicitly address this correlation. In contrast, the one-step
regressions push the unobserved heterogeneity into the error term, leading to an endogeneity
issue; see Muris and Wacker (2022) for a formal comparison.

Our causal analysis provides a different perspective on this issue, enabling us to interpret
the resulting estimands. As discussed in the previous two sections, the one-step approach
typically does not yield a meaningful causal quantity. However, the reasons for this are more

11See the previous version of this paper for particular assumptions.
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nuanced than highlighted in traditional econometric literature. In particular, selection and
contamination biases play a significant role. In simpler models, these issues may not occur,
and the one-step procedure can produce an interpretable causal quantity. We illustrate this
using a simple example in Appendix B.7.

This discussion highlights two key points. First, it is essential to specify the underlying
causal model when conducting policy analysis on the measured unit-level parameters. To our
knowledge, this paper is the first to explicitly tackle this issue and underscore the associated
challenges. Second, the well-known econometric problems with one-step approaches may be
less pertinent in the context of causal analysis. Instead, it is important to confront selection
problems, address contamination bias, and clarify which type of policy evaluation identifica-
tion strategy to employ. By separating the measurement and evaluation steps, researchers can
effectively address all these issues.

3 Measuring individual-level child penalties

In this section, wemeasure the ULES described in Section 2.1 in a particular empirical problem:
the estimation of child penalties (CPs).12 We begin by describing the data we use for this
purpose. We then describe the construction of ULES—which, in this particular context, we
also call individual-level CP—and explore the observed and unobserved heterogeneity in these
quantities. These data and the individual-level CP measures are then used in Section 4, in
which we analyze the effects of childcare expansion policies.

3.1 Data

Data Sources

We use administrative data from the Central Bureau of Statistics Netherlands (CBS) on the uni-
verse of Dutch residents. Different data sources, such as municipality registers or tax records,
are matched through unique individual or household anonymized identifiers. The following
section presents the main variables used and sample construction.

Tax and Employment Records Our primary data source is an extensive annual-level employer-
employee data set derived from tax records (baansommentab) covering 1999 to 2016. We
analyze two labor market outcomes: unconditional earnings and employment. Employment
is specified as having a job based on an employment contract between a firm and a person,

12In their influential paper, Kleven et al. (2019) coined the term “child penalty” to describe the differential
career and earnings losses incurred by women compared with men after having children.
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excluding self-employment. Second, earnings data consist of yearly gross earnings after social
security contributions but before taxes and health insurance contributions from official tax
data.

Demographic and Education Information To enrich our understanding of the workforce,
we incorporate demographic data into our analysis (gbapersoontab). This includes birth year,
date of death, sex, and annual information on the municipality of residence, household com-
position, marital status, and migration spells (gbaadresobjectbus and vslgwbtab). A unique
aspect of our demographic data is the inclusion of a parent-child key (kindoudertab). We use
information on birthdates and the linkage between parents and their children to determine
the first child for all legal parents, which may include both adoptive and biological parents.
Lastly, we also observe the educational attainment at each point in time (hoogsteopltab) and
use the highest level of education attained by 2022, which we classify into three levels: high
school, vocational training, and bachelor’s degree. We exclude individuals with higher educa-
tion (MA and PhD) and lower education (below high-school subpopulations for two reasons:
(a) they form a smaller share of the population, and (b) fertility and labor market decisions
will likely follow a different pattern in those groups.13

Childcare Provision Data An integral part of our study involves examining the role of child-
care in labor market participation. To this end, we use records on childcare service providers
using the firm’s job classification (betab), and data on job location that we use to compute our
index of childcare supply permunicipality (given from gemstplaatsbus/gemtplbus/ngemstplbus).
The job location data set contains each worker’s municipality and firm ID, which we merge
with the firm classification data.

Sample Definition

A key aspect of our study is the examination of labor market outcomes around the time of first
childbirth. We restrict the sample to individuals born in 1993 or earlier to ensure we observe
labor market outcomes at sufficiently mature ages. To capture transitions into parenthood, we
include only those whose age at first birth was below 44, as observed from 2003 onward. To
ensure adequate labor market attachment before parenthood, we further restrict the sample to
individuals who became parents at least 6 years after the typical graduation age for their high-
est educational attainment: 24 years for high school graduates, 26 years for vocational degree
holders, and 27 years for those with a bachelor’s degree. This approach provides a balanced
panel of pre-parenthood labor market trajectories while minimizing censoring concerns.

13These different life-cycle earnings patterns translate to violations of our statistical model, requiring another
sample restriction.
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3.2 Measurement

To estimate individual CP, we follow the approach outlined in Section 2.1 describing the gen-
eral estimation of ULES. For each individual, we observe several covariates: gender Gi ∈
{male; female}, education level educi, and birth cohort Bi; we collect these covariates into
a vector Xi = (Gi, educi, Bi) and conduct the analysis separately for each possible value of
Xi. The groups g(i) in our application correspond to municipalities, which we discuss in more
detail in the next section.

Compared with the simple model outlined in Section 2.1, we need to make several changes
to incorporate the additional complexity of the empirical application. The first adjustment is
conceptually straightforward: We observe individuals for many years and thus have many dif-
ferent event times. The conceptual extension of the measurement model to allow for multiple
periods before and after the event is immediate, and we explain the practical implementation
in Appendix B.4.

The second adjustment is motivated by the economic forces behind the observed data. The
measurement model (1) is based on the concept of an event time, which is not clearly defined
in the context of childbirth. For instance, individuals can change their economic decisions
today in anticipation of having children in the future. Moreover, the observed childbirth is a
realization of the underlying latent process of individuals attempting to have children. There-
fore, to make the measurement system (1) meaningful, we need to consider these anticipation
and uncertainty concerns. We opt for a more agnostic and data-driven approach rather than
committing to a particular dynamic model behind the observed data. Specifically, we allow
childbirth to affect labor market outcomes for up to 3 years before the event. We then test
and find empirical support for the resulting model using the methods outlined in Section 2.4.
From an algorithmic standpoint, this amounts to shifting the observed childbirth year by 3
years and then applying the approach described in Section 2.1 and Appendix B.4.

We estimate τ̂i,h with h ∈ {−3, . . . , 5}, where negative values of h correspond to pre-event
periods. Our approach is similar to the conventional one used in the literature on CPs (e.g.,
Kleven et al., 2019), but with two important distinctions. First, we use a larger control group
by considering the outcomes of all individuals who have children later in life, not just those
who have children 1 year apart. Second, we adjust for permanent differences in pre-event
outcomes to account for possible compositional differences among groups of individuals who
have children at different ages. We apply the imputation algorithm of Borusyak et al. (2024b)
to construct estimates τ̂BJS

i,h for τi,h.14

In line with Remark 2.1, we do not commit to an interpretation of τi,h as “causal effects”
14As discussed in Remark 2.2 and Section 2.4, there are multiple valid estimators for τi,h. In particular, our

methodology allows users to choose a more restricted control group, such as individuals who had children in the
subsequent year. We use the imputation estimator because we expect it to be more efficient.

23



of childbirth, but rather view the measurement system we use to construct estimates for τi,h
as effectively defining CPs as latent variables of interest. Attaching causal meaning to τi,h is
challenging for several reasons. As discussed above, childbirth, or lack of it, results from many
unobserved decisions individuals make. One approach to this problem is relying on explicit
randomness that affects these decisions (e.g., birth control failure or reproductive medicine
success).15 When feasible, this strategy recovers LATE-type parameters relevant only for par-
ticular subpopulations.

In contrast, by leveraging the measurement model (1), we can calculate τ̂BJS
i,h for a sig-

nificant share of individuals with children. This is only useful if the comparisons we use to
estimate τ̂BJS

i,h are reasonable or, formally, if the measurement model (1) is correct. There-
fore, we use the testable implications discussed in Section 2.4 to validate them. Specifically,
we can observe how well we adjust for differences across various groups by examining τ̂BJS

i,h

for negative values of h. Indeed, we identify violations of this validation exercise for some
combinations of education groups and age at first birth, which motivates our further sample
selection. We elaborate on the results of these diagnostic tests in more detail below.

Since CPs are more naturally interpreted in relation to underlying baseline outcomes (earn-
ings or participation), we normalize them using average predicted outcomes based on model
(1); see Appendix B.4.4 for details. For future reference, we introduce the following notation
for the normalized ULES:

τ̃BJS
i :=

(
τ̃BJS
i,−3 , . . . , τ̃

BJS
i,5

)
,

where each τ̃BJS
i,h is the normalized version τ̂BJS

i,h .

Individual-level heterogeneity

To visualize the variation in τ̃BJS
i,h , we conduct an exploratory analysis of these objects. This

analysis intentionally ignores the measurement and estimation errors we discussed in Sections
2.1 and 2.4. We start by plotting the marginal distributions of τ̃BJS

i,h (for earnings) across
different horizons and genders pooled across all birth cohorts. The results are reported in
Figure Ia and demonstrate a large variation in estimated individual CP, which increases over
h.

Figure Ia focuses on marginal distributions for each h and therefore cannot address the per-
sistence of CP and its trajectory. To investigate the persistence further, we employ a K-means
algorithm (Lloyd, 1982) applied to the vector of estimated child penalties τ̃BJS

i and categorize
all individuals of the same gender into three groups. The findings of this analysis are presented
in Figure Ib and reveal significant variation in the CP trajectories. Notably, we observe that
approximately two-thirds of the male population experience non-existent CP (orange line).

15See, for example, Bensnes et al. (2023) and Lundborg et al. (2024).
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Simultaneously, a quarter of the sample exhibits large negative trajectories (green), while an-
other 10% of the population demonstrates a positive trajectory relative to their counterfactual
earnings growth without parenthood (blue). The situation for females is qualitatively similar;
however, the trajectories differ markedly, with 28% of women appearing to exit the labor force
(green), 55% transitioning to part-time work (orange), and 17% maintaining their pre-birth
trajectory. These results indicate that traditional analyses reporting the average CP across
the entire population may overlook significant individual-level variation. Nonetheless, these
findings should be interpreted with caution due to measurement errors.

Validation of the measurement model

Once τ̃BJS
i,h are available, summarizing them across various dimensions becomes easy and high-

lights key aspects of heterogeneity. These summaries can support the underlyingmeasurement
model or advise against its use. To investigate this in our empirical application, we project τ̃BJS

i,h

onto the age at first birth Ai = Ei − Bi separately for individuals with different levels of ed-
ucation. Figure A.1 presents our estimated CPs by education level, gender, and age at first
birth. We observe significant heterogeneity among these groups, which is interesting both
empirically and as validation for our statistical model.

In particular, CPs are larger for less-educated women regarding participation and earnings
margins. Furthermore, for these individuals, we do not observe significant anticipation effects
across all ages, which suggests that τi,h is indeed linked to childbirth. The results differ for
college-educated individuals, with women experiencing smaller CPs that tend to decrease uni-
formly with Ai over h. We also notice that the CPs of college-educated parents exhibit erratic
behavior prior to giving birth, for individuals who have children before the age of 30. This
indicates that we overlook crucial life cycle heterogeneity among college-educated individu-
als who have children at younger ages. Interestingly, this heterogeneity disappears once we
focus on sufficiently older parents over 30. Motivated by these results, in the remainder of
the analysis when we discuss college-educated parents we focus on those who became parents
between ages of 31 and 34.

4 Policy analysis: Using unit-level estimates as an outcome

In this section, we continue with our CP analysis and explain how the ULES described in
Section 3 can be used as an outcome of interest in policy evaluation exercises. Specifically, we
illustrate this in the context of evaluating the effects of childcare supply expansion policies on
the child penalty. This policy has been recently studied in several studies, finding a wide range
of empirical evidence (Andresen and Nix, 2022a; Kleven et al., 2024; Rabaté and Rellstab,
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2021).

4.1 Institutional background: Dutch childcare provision

The 2005 Dutch childcare expansion reform

We begin with a brief overview of the subsidized childcare system and its recent changes in
the Netherlands (see Bettendorf et al. (2015) for more details).

Before the 2005 reform, access to childcare was not uniform. Factors such as whether
parents’ employers contributed to childcare costs and varying policies between municipalities
affected accessibility and cost. There were also noticeable differences in what parents had to
pay childcare providers, regardless of whether companies or municipalities subsidized them.
For example, the system for center-based daycare (25% of children) was funded differently
across the board. Most daycare centers received subsidies from employers and local govern-
ments. Although 24% of daycare centers were not subsidized, working parents could partially
reduce costs through tax deductions. In addition to center-based care, around 25% of children
attended playgroups, which offered part-time care for less than 4 hours a day. Finally, subsi-
dized and unsubsidized (yet tax-deductible) options for out-of-school care resulted in a low
6% enrollment rate for 4-to 12-year-olds in center-based care in 2004 (Rabaté and Rellstab,
2021).

The 2005 reform brought significant change and created a unified subsidy system for
center-based care. From then on, all center-based daycare centers were eligible for the same
government subsidy, which was given directly to parents using formal care. This change was
especially beneficial for parents who used unsubsidized centers before 2005, since the new
subsidy was typically more than what they saved through tax deductions.

Childcare index

To create a municipality-based index of childcare supply, we use comprehensive information
from the 5-digit sector classification, which has been available for all jobs in the Netherlands
since 2001. These data allow us to identify childcare workers and their job locations.16 Our
childcare supply index (CCI) for each municipality is calculated by dividing the number of
childcare jobs in a given municipality g and year t (N jobs

g,t ) by the number of children under 5
years of age in the same locality (N children

g,t ):

CCIg,t = N jobs
g,t /N children

g,t

16Rabaté and Rellstab (2021) Appendix C.2 shows a strong correlation between the trends in childcare em-
ployment and the aggregate public spending on childcare, validating this index.
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Figure IIa presents the variation in childcare supply per preschool-aged child across munici-
palities from 1999 to 2016. Each dot represents the mean CCI in a given year, whereas the
shaded area represents the distribution of CCI across municipalities. The data reveal a signif-
icant range in the ratio of childcare workers to preschool children, with values ranging from
0 to 0.3.17 The figure illustrates the substantial variation in childcare availability between
different municipalities and the large increase due to the 2005 childcare expansion reform.

Remark 4.1. In the data, individuals migrate across municipalities; thus, there is no fixed as-
sociation between individual i and group g. Instead, the relationship is period-specific; i.e., we
can associate municipality g(i, t) with individual i in period t. This structure can be accommo-
dated within the model from Section 2.3 by defining g(i) as a vector of locations the individual
resides in throughout the observation period. However, this leads to a dramatic expansion of
the number of possible groups and renders this unrestricted approach infeasible in practice.
To simplify the analysis, we opt for a simpler solution and define g(i) as g(i, Ei), i.e., assign the
individual to the municipality in which this person resided at the year of their first childbirth.
We then focus on the level of childcare availability in location g(i) in two key decision points:
1 year before first birth (CCIg(i),Ei−1) and the contemporaneous year (CCIg(i),Ei+h). An alter-
native solution would be to consider an AKM-type structure (Abowd et al., 1999), allowing
for λg(i,t),t.

4.2 Descriptive analysis: CP and childcare provision levels

This section explores the descriptive relationship between childcare provision levels and CPs
(Figure III). We aggregate estimated ULES at the municipality times year-of-conception level,
following the empirical strategy described in Section 3.2, and plot them against the child-
care provision index (CCI). The line represents the estimated coefficient from regressing the
individual CP on CCI. We split the estimation between men in blue and women in orange
and present the results across horizons h ∈ {0, . . . , 5}. Figure IIIa presents correlations using
CP estimates for earnings. Similarly, Figure IIIb presents correlations using CP estimates for
participation.

For women, childcare provision levels are related to lower CP in participation and earnings.
The relationship is stronger as we get further from the year of birth. This is consistent with
the idea that childcare provision helps mothers return to the labor force after they finish their
maternity leave, and thus shrinks the CP. Fathers exhibit a similar but weaker relationship on
the earnings margin.

17Measurement errors might influence some of the extreme values since the job location is tied to the firm’s
location and may not always align with the actual municipality where the job is performed.
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A naive interpretation of these results would conclude that childcare provision reduces the
CP. However, this would ignore the supply-side response to a differential demand. In other
words, households with higher employment and earnings potential would be more willing to
pay for childcare services, resulting in higher availability in their municipality. Therefore, we
shift our analysis to directly explore the 2005 Dutch childcare expansion policy.

4.3 The effect of the Dutch childcare expansion policy on the CP

Our policy analysis uses the framework described in Section 2.3, in which we use the estimated
τ̃i,h in Section 3.2 as an outcome. The key assumption the analysis relies on is that the policy
does not directly affect the timing of childbirth. To justify this assumption, we conduct a
duration analysis by relating the conditional probability of having a child to baseline levels of
the policy variable, adjusting for municipality and age. Appendix B.6 discusses the underlying
assumptions behind this analysis. The results are reported in Table A.1 and do not show any
significant effect of the policy, which makes us more comfortable with the first assumption.
To validate the rest of the assumptions, we conduct a placebo analysis and use τ̃BJS

i,h for h ∈
{−3,−2,−1} as outcomes and relate them to (Wg(i),Ei−3, . . . ,Wg(i),Ei−1). Results are presented
in Tables A.2 and A.3 and show no relationship, thus validating our policy evaluation model.

Our primary analysis relies on specification (6) and its generalization, which accommo-
dates multiple periods and covariates and is discussed in Appendix B.4. In particular, we
relate the level of the policy in the period before childbirth, CCIg(i),Ei−1, and the levels of the
contemporaneous policy, CCIg(i),Ei+h, to τ̃BJS

i,h for h ∈ {0, . . . , 5}. We control for the munic-
ipality of residence at the time of the event (first birth), the event year, and the age at first
childbirth fixed effects. Our results in Figure IV suggest substantial heterogeneity in treatment
effects, whereby more educated parents experience a greater increase in earnings due to en-
hanced childcare availability.18 These heterogeneous treatment effects may provide insights
into the economic mechanism underlying the relationship between childcare provision and
labor supply. Specifically, we can interpret these heterogeneous treatment effects through the
lens of selection: Households sort into the childcare supply they prefer. For instance, house-
holds with low labor-force attachment may prefer to raise their children during their early
years and thus may sort into areas with limited childcare availability. Alternatively, these
heterogeneous treatment effects can be understood from a structural perspective.

18This pattern also holds for the participation margin and persists when we extend our analysis to lower
education groups (see Figures A.3 and A.4).
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Structural interpretation of childcare expansion on parental labor supply

Using a simple household model, we illustrate a potential economic intuition behind the het-
erogeneous relationship between the child penalty and the contemporaneous childcare pro-
vision by gender (see Appendix C for details). When outsourcing childcare is inexpensive
relative to wages, it becomes appealing for parents to outsource it, thereby increasing the
likelihood of them working more and boosting household income. However, the model high-
lights how this intuition only emerges when the contemporaneous childcare costs fall below a
certain threshold. Above that threshold, childcare becomes prohibitively expensive, and often
leaves one parent (usually the mother) at home, at least during the first few years.

Furthermore, a more nuanced economic interpretation of the results is the job flexibility
of parents, which may vary by education level and timing of the childcare expansion. The
interplay between job type and education further highlights these dynamics. Goldin (2014)
classifies jobs into two distinct types based on their wage schedules: linear and nonlinear.
Linear jobs show a proportional relationship between hours worked and wages, allowing for
greater flexibility in scheduling. Nonlinear jobs, in contrast, feature convex wage schedules,
imposing significant penalties for reducing working hours.19 Since nonlinear jobs typically
offer higher wages, highly educated women are more inclined to pursue them, while lower-
educated women tend to remain in linear jobs. As a result, childcare interventions dispropor-
tionately benefit highly educated women, since they are more likely to have jobs with demand-
ing work-hour requirements, thereby amplifying the impact of childcare availability on their
labor market outcomes. This job flexibility logic might be more relevant to contemporaneous
changes in childcare, as opposed to changes to childcare during pregnancy, which have more
long-term consequences, explaining the different patterns between Figures IVa and IVb.

4.4 Comparison with conventional methods

In the previous section, we discussed the benefits of using ULES estimates as objects of inter-
est for policy evaluation. We illustrated this in the context of assessing the effects of childcare
expansion on the child penalty (CP). This section will compare our method with the common
one-step approach, which does not separate the measurement and policy evaluation steps,
and instead implements both in one extended difference-in-differences (DiD) regression. As
a result, it tends to binarize the treatment status and time variation, potentially overlooking
significant data variation. Our two-step approach, in contrast, leverages the broader (nonbi-

19Erosa et al. (2022) formalize the trade-off between flexibility and wages in the U.S. labor market. Their
model emphasizes how home production requirements within households drive women to disproportionately
choose linear jobs. Yanagimoto (2024) develops a similar model to examine the role of childcare availability in
shaping occupational choices. His analysis reveals that access to childcare allows women to transition from linear
to nonlinear jobs by alleviating domestic labor constraints.
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nary) variation in the data to provide a more nuanced understanding of policy impact, which
allows us to uncover the heterogeneous treatment effects discussed in Section 4.3. This not
only enriches the analysis but also offers clearer, more precise, and actionable information for
policymakers and stakeholders. Finally, we will demonstrate below that the two approaches
lead to qualitatively different conclusions.

One-step approach

The common one-step approach employs a DiD method that typically discretizes the pre-
treatment and post-treatment periods along with the treatment status. In the context of the
2005 Dutch childcare expansion reform, pre-treatment period outcomes are defined between
2000 to 2005 and consider, for each individual, a balanced panel of time relative to first birth
(h = −1, . . . , 5). Similarly, post-treatment outcomes are observed between 2011 and 2016.20

Because the policy was implemented nationwide simultaneously, it is challenging to de-
fine a binary treatment status, a common issue encountered when evaluating any nationwide
policy. The literature analyzing the effects of the expansion of childcare on the CP typically
defines treatment as municipalities that experienced a CCI expansion above a certain thresh-
old (Kleven et al., 2024; Lim and Duletzki, 2023; Rabaté and Rellstab, 2021). We adopt this
convention and define treatment as municipalities with an expansion of at least ten percentage
points in CCI between the pre- and post-periods:

Tg(i) ≡ 1{CCI
2010−2015

g(i) − CCI
1999−2004

g(i) > 0.1},

where we assign individual i to location g(i) based on the municipality they resided in prior
to childbirth, Ei − 1.

This variation used in the DiD specification is illustrated in Figure IIb, which plots the CCI

index over time according to treatment status. We see that both the treatment and control
groups show parallel trends in the pre-period. In the post-period, the treatment diverges from
the control group (mechanically). Notably, the control group also responds to the policy, which
is expected since the policy was implemented nationwide. This highlights a drawback of this
common approach: It leaves substantial variation on the table and may lead to different con-
clusions. However, the main advantage of this approach is the ability to run it in a single

20Note that we adjusted our sample criteria to include parents with their first childbirth after 1995 to allow
for a sufficient labor market horizon (e.g., to observe the horizon h = 5 at 2000). Furthermore, since the one-
step approach does not typically segment the analysis by education, we remove the age at first birth criteria by
education group, instead including all parents whose age at first birth is between 24 and 34, regardless of their
education level (high school, vocational, or bachelors).
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regression as follows:

Yi,t = λt + γt−Bi
+
∑
h̸=−1

αh1 {t− Ei = h}+
∑
h̸=−1

ρh1 {t− Ei = h}Tg(i)

+
∑
h̸=−1

δh1 {t− Ei = h}1{Ei > 2005}

+
∑
h̸=−1

βh1 {t− Ei = h}Tg(i)1{Ei > 2005}+ vi,t.

(9)

where Bi is the birth year of individual i, which makes γt−Bi
the age fixed effects, and the rest

of the variables are the same as we define above.

Comparing results

Figure V presents results from estimating Equation (9). The left panel presents the results
for earnings and the right panel the results for participation. We can notice that for both
earnings and participation margins, the one-step approach concludes that a childcare expan-
sion resulted in a decrease in earnings for both parents and participation for the mothers –
a result that is hard to justify with standard economic models. These results starkly contrast
with the positive effect of childcare expansion on the parental labor supply under the two-step
procedure we discussed in Section 4.3.

What might explain the qualitative differences in the results of the two approaches? Signif-
icant distinctions exist in both the measurement and policy analysis. Implicitly, the one-step
approach also has a measurement built-in: Regression (9) estimates the unit-level CPs and
aggregates them before conducting the policy analysis. Specifically, in a given period, it im-
plicitly compares the labor market outcomes of a parent with those of an individual of the
same age who will have a child in the subsequent period.21 In contrast, our two-step approach
relies on the DiD-type comparisons outlined in Section 2.1. Because the comparisons in the
one-step approach in regression (9) are cross-sectional, they can accommodate a larger group
of individuals, since there is no need to adjust for pre-event outcomes. However, the downside
is that it requires strong selection assumptions; for instance, model (1) suggests that unit-level
fixed effects can confound such comparisons, limiting the ability of the one-step approach to
control for unobserved heterogeneity. After constructing unit-level estimates, regression (9)
implicitly aggregates them to the level of policy variation; namely, in four groups. Conceptu-
ally, this exercise suffers from the contamination bias explained by Goldsmith-Pinkham et al.
(2024), although the magnitude of this bias can be small in some applications.

21Technically, additional comparisons are implicitly validated by (9), such as DiD-type comparisons of individ-
uals from different birth cohorts across various periods (ensuring they share the same age). These questionable
comparisons arise from the two-way model and are eliminated when we include t×Ai fixed effects.
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The second key difference lies in the variation used in the policy evaluation exercise itself.
The two-step approach uses detailed information on the policy level and its variation over
time, while the one-step approach separates this variation into four groups (by treatment-
and post-status). This exercise may appear cleaner because it relies on simple comparisons
and does not limit any dynamic effects of the policy. However, in this particular case, such an
interpretation is superficial, because the underlying policy variation dynamics are complex:
There is no perfect pre-policy period or ideal control group of municipalities. By suggesting
that it resembles the standard DiD setup, researchers do not achieve greater transparency and
potentially lose significant statistical power, along with the ability to conduct a more nuanced
and economically relevant analysis. Indeed, our empirical results in Figure IV suggest such
dynamic considerations are important.

The methodology used in this section demonstrates the benefits of ULES measurements
as outcomes in policy evaluations. This flexible approach can be applied to examine the ef-
fects of various policies, providing a valuable tool for policy analysis and academic research.
Importantly, by separating the analysis into two steps, we allow researchers to use all recent
advances in policy evaluation techniques, including those with continuous and dynamic treat-
ments. We view the flexibility and transparency of our approach as the main reason for using
it in empirical practice.

5 Conclusion

This paper introduces a new method for analyzing how units react to events, such as having
a child or facing a policy change. We argue that examining these responses on a unit basis,
rather than merely focusing on averages, can reveal important insights. Our approach consists
of two steps: First, wemeasure how each unit is impacted by an event by comparing them with
a comparable group of people who have not experienced the event. Second, we use these unit-
level estimates to conduct our causal analysis step. We also provide an online tutorial to ease
adoption of the two-step approach.22

We demonstrate that this two-step approach is especially effective for examining the ef-
fects of policies that change over time and exploring heterogeneous treatment effects among
different groups. In our analysis, we show that the expansion of childcare in the Netherlands
had varying impacts on mothers and fathers, and that these impacts depended on the par-
ents’ education level and the timing of the childcare expansion. These findings emphasize the
significance of considering individual circumstances when evaluating policies.

More broadly, our analysis is relevant for empirical issues in which researchers can con-
22https://kazuyanagimoto.com/unitdid/
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ceptually distinguish between the measurement phase and the causal analysis. For example,
some commonly used relevant applications include: teacher value-added, mass layoff events,
and firm wage premium estimation. Our theoretical findings are directly applicable to models
in which unbiased estimation is possible. It can also be expanded to encompass more general,
nonlinear models, potentially by combining it with Empirical Bayes methods.

33



References

Abowd, John M., Francis Kramarz, and David N. Margolis. 1999. “High Wage Workers and
High Wage Firms.” Econometrica 67 (2): 251–333. 10.1111/1468-0262.00020, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1468-0262.00020.

Adams, Abi, Mathias Fjællegaard Jensen, and Barbara Petrongolo. 2024. “Birth Timing
and Spacing: Implications for Parental Leave Dynamics and Child Penalties.”

Andresen, Martin Eckhoff, and Emily Nix. 2022a. “Can the child penalty be reduced? Eval-
uating multiple policy interventions.” http://hdl.handle.net/10419/268059, Issue: 983
tex.copyright: http://www.econstor.eu/dspace/Nutzungsbedingungen.

Andresen, Martin Eckhoff, and Emily Nix. 2022b. “What Causes the Child Penalty? Evidence
from Adopting and Same-Sex Couples.” Journal of Labor Economics 40 (4): 971–1004.
10.1086/718565.

Angelov, Nikolay, Per Johansson, and Erica Lindahl. 2016. “Parenthood and the Gender
Gap in Pay.” Journal of Labor Economics 34 (3): 545–579. 10.1086/684851, Publisher: The
University of Chicago Press.

Angrist, Joshua D., and Jörn-Steffen Pischke. 2009. Mostly Harmless Econometrics: An Em-
piricist’s Companion. Princeton University Press, . 10.2307/j.ctvcm4j72.

Arellano, Manuel, and Stéphane Bonhomme. 2012. “Identifying Distributional Character-
istics in Random Coefficients Panel Data Models.” The Review of Economic Studies 79 (3):
987–1020. 10.1093/restud/rdr045.

Arellano, Manuel, and Olympia Bover. 1995. “Another look at the instrumental variable
estimation of error-components models.” Journal of Econometrics 68 (1): 29–51. 10.1016/
0304-4076(94)01642-D.

Arkhangelsky, Dmitry, and Guido Imbens. 2024. “Causal models for longitudinal and panel
data: a survey.” The Econometrics Journal 27 (3): C1–C61. 10.1093/ectj/utae014.

Arkhangelsky, Dmitry, and Guido W Imbens. 2022. “Doubly robust identification for causal
panel data models.” The Econometrics Journal 25 (3): 649–674. 10.1093/ectj/utac019.

Arkhangelsky, Dmitry, Guido W. Imbens, Lihua Lei, and Xiaoman Luo.
2024a. “Design-robust two-way-fixed-effects regression for panel data.”
Quantitative Economics 15 (4): 999–1034. 10.3982/QE1962, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.3982/QE1962.

34

http://dx.doi.org/10.1111/1468-0262.00020
http://hdl.handle.net/10419/268059
http://dx.doi.org/10.1086/718565
http://dx.doi.org/10.1086/718565
http://dx.doi.org/10.1086/684851
http://dx.doi.org/10.2307/j.ctvcm4j72
http://dx.doi.org/10.1093/restud/rdr045
http://dx.doi.org/10.1016/0304-4076(94)01642-D
http://dx.doi.org/10.1016/0304-4076(94)01642-D
http://dx.doi.org/10.1093/ectj/utae014
http://dx.doi.org/10.1093/ectj/utac019
http://dx.doi.org/10.3982/QE1962


Arkhangelsky, Dmitry, and Aleksei Samkov. 2024. “Sequential Synthetic Difference in Dif-
ferences.” March. 10.48550/arXiv.2404.00164, arXiv:2404.00164 [econ].

Arkhangelsky, Dmitry, Kazuharu Yanagimoto, and Tom Zohar. 2024b. “Flexible Analysis
of Individual Heterogeneity in Event Studies: Application to the Child Penalty.” March.
10.48550/arXiv.2403.19563, arXiv:2403.19563 [econ].

Athey, Susan, and Stefan Wager. 2021. “Policy Learning With Observa-
tional Data.” Econometrica 89 (1): 133–161. 10.3982/ECTA15732, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA15732.

Bensnes, Simon, Ingrid Huitfeldt, and Edwin Leuven. 2023. “Reconciling Estimates of the
Long-Term Earnings Effect of Fertility.” SSRN Electronic Journal. 10.2139/ssrn.4464587.

Bettendorf, Leon J. H., Egbert L. W. Jongen, and Paul Muller. 2015. “Childcare subsidies
and labour supply — Evidence from a large Dutch reform.” Labour Economics 36 112–123.
10.1016/j.labeco.2015.03.007.

Bonhomme, Stéphane, and Ulrich Sauder. 2011. “Recovering Distributions in Difference-in-
Differences Models: A Comparison of Selective and Comprehensive Schooling.” The Review
of Economics and Statistics 93 (2): 479–494. 10.1162/REST_a_00164.

Borusyak, Kirill, and Peter Hull. 2023. “Nonrandom Exposure to Exogenous
Shocks.” Econometrica 91 (6): 2155–2185. 10.3982/ECTA19367, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA19367.

Borusyak, Kirill, and Peter Hull. 2024. “Negative Weights Are No Concern in Design-Based
Specifications.” AEA Papers and Proceedings 114 597–600. 10.1257/pandp.20241046.

Borusyak, Kirill, Peter Hull, and Xavier Jaravel. 2024a. “Design-based identification with
formula instruments: A review.” The Econometrics Journal utae003. 10.1093/ectj/utae003.

Borusyak, Kirill, Xavier Jaravel, and Jann Spiess. 2024b. “Revisiting Event-Study Designs:
Robust and Efficient Estimation.” The Review of Economic Studies rdae007. 10.1093/restud/
rdae007.

Callaway, Brantly, and Pedro H.C. Sant’Anna. 2021. “Difference-in-Differences withmultiple
time periods.” Journal of Econometrics 225 (2): 200–230. 10.1016/j.jeconom.2020.12.001.

Castellanos, María Alexandra. 2024. “Immigration, Parenthood and Child Penalties.”

Chamberlain, Gary. 1992. “Efficiency Bounds for Semiparametric Regression.” Econometrica
60 (3): 567–596. 10.2307/2951584, Publisher: [Wiley, Econometric Society].

35

http://dx.doi.org/10.48550/arXiv.2404.00164
http://dx.doi.org/10.48550/arXiv.2403.19563
http://dx.doi.org/10.48550/arXiv.2403.19563
http://dx.doi.org/10.3982/ECTA15732
http://dx.doi.org/10.2139/ssrn.4464587
http://dx.doi.org/10.1016/j.labeco.2015.03.007
http://dx.doi.org/10.1162/REST_a_00164
http://dx.doi.org/10.3982/ECTA19367
http://dx.doi.org/10.1257/pandp.20241046
http://dx.doi.org/10.1093/ectj/utae003
http://dx.doi.org/10.1093/restud/rdae007
http://dx.doi.org/10.1093/restud/rdae007
http://dx.doi.org/10.1016/j.jeconom.2020.12.001
http://dx.doi.org/10.2307/2951584


Chernozhukov, V, W K Newey, and R Singh. 2023. “A simple and general debiased machine
learning theorem with finite-sample guarantees.” Biometrika 110 (1): 257–264. 10.1093/
biomet/asac033.

Chernozhukov, Victor, Denis Chetverikov, and Kengo Kato. 2017. “Central limit theorems
and bootstrap in high dimensions.” The Annals of Probability 45 (4): 2309–2352. 10.1214/
16-AOP1113, Publisher: Institute of Mathematical Statistics.

Chernozhukov, Victor, Mert Demirer, Esther Duflo, and Iván Fernández-Val. 2018.
“Generic Machine Learning Inference on Heterogeneous Treatment Effects in Randomized
Experiments, with an Application to Immunization in India.” June. 10.3386/w24678.

Chernozhukov, Victor, Whitney K. Newey, and Rahul Singh. 2022. “Automatic Debiased
Machine Learning of Causal and Structural Effects.” Econometrica 90 (3): 967–1027. 10.
3982/ECTA18515, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA18515.

De Chaisemartin, Clément, and Xavier d’Haultfoeuille. 2020. “Difference-in-Differences
Estimators of Intertemporal Treatment Effects.” SSRN Electronic Journal. 10.2139/ssrn.
3731856.

Erosa, Andrés, Luisa Fuster, Gueorgui Kambourov, and Richard Rogerson. 2022. “Hours,
Occupations, and Gender Differences in Labor Market Outcomes.” American Economic Jour-
nal: Macroeconomics 14 (3): 543–590. 10.1257/mac.20200318.

Foster, Dylan J., and Vasilis Syrgkanis. 2023. “Orthogonal statistical learning.” The Annals
of Statistics 51 (3): 879–908. 10.1214/23-AOS2258, Publisher: Institute of Mathematical
Statistics.

Freyaldenhoven, Simon, Christian Hansen, Jorge Pérez Pérez, and Jesse M. Shapiro.
2021. “Visualization, Identification, and Estimation in the Linear Panel Event-Study Design.”
August. 10.3386/w29170.

Gallen, Yana. 2019. “The effect of parental leave extensions on firms and coworkers.”

Goldin, Claudia. 2014. “A Grand Gender Convergence: Its Last Chapter.” American Economic
Review 104 (4): 1091–1119. 10.1257/aer.104.4.1091.

Goldsmith-Pinkham, Paul, Peter Hull, and Michal Kolesár. 2024. “Contamination Bias
in Linear Regressions.” American Economic Review 114 (12): 4015–4051. 10.1257/aer.
20221116.

36

http://dx.doi.org/10.1093/biomet/asac033
http://dx.doi.org/10.1093/biomet/asac033
http://dx.doi.org/10.1214/16-AOP1113
http://dx.doi.org/10.1214/16-AOP1113
http://dx.doi.org/10.3386/w24678
http://dx.doi.org/10.3982/ECTA18515
http://dx.doi.org/10.3982/ECTA18515
http://dx.doi.org/10.2139/ssrn.3731856
http://dx.doi.org/10.2139/ssrn.3731856
http://dx.doi.org/10.1257/mac.20200318
http://dx.doi.org/10.1214/23-AOS2258
http://dx.doi.org/10.3386/w29170
http://dx.doi.org/10.1257/aer.104.4.1091
http://dx.doi.org/10.1257/aer.20221116
http://dx.doi.org/10.1257/aer.20221116


Graham, Bryan S., and James L. Powell. 2012. “Identification and Estimation
of Average Partial Effects in “Irregular” Correlated Random Coefficient Panel
Data Models.” Econometrica 80 (5): 2105–2152. 10.3982/ECTA8220, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA8220.

Holtz-Eakin, Douglas, Whitney Newey, and Harvey S. Rosen. 1988. “Estimating Vector
Autoregressions with Panel Data.” Econometrica 56 (6): 1371–1395. 10.2307/1913103,
Publisher: [Wiley, Econometric Society].

Imbens, Guido W., and Donald B. Rubin. 2015. Causal Inference for Statistics, Social, and
Biomedical Sciences: An Introduction. Cambridge: Cambridge University Press, . 10.1017/
CBO9781139025751.

Karademir, Sencer, Jean-William P. Laliberté, and Stefan Staubli. 2024. “The Multigener-
ational Impact of Children and Childcare Policies.” March. 10.3386/w32204.

Kennedy, Edward H. 2023. “Towards optimal doubly robust estimation of heterogeneous
causal effects.” Electronic Journal of Statistics 17 (2): 3008–3049. 10.1214/23-EJS2157,
Publisher: Institute of Mathematical Statistics and Bernoulli Society.

Kleven, Henrik, Camille Landais, Johanna Posch, Andreas Steinhauer, and Josef
Zweimüller. 2024. “Do Family Policies Reduce Gender Inequality? Evidence from 60 Years
of Policy Experimentation.” American Economic Journal: Economic Policy 16 (2): 110–149.
10.1257/pol.20210346.

Kleven, Henrik, Camille Landais, and Jakob Egholt Søgaard. 2019. “Children and Gender
Inequality: Evidence from Denmark.” American Economic Journal: Applied Economics 11 (4):
181–209. 10.1257/app.20180010.

Lee, David S. 2009. “Training, Wages, and Sample Selection: Estimating Sharp
Bounds on Treatment Effects.” The Review of Economic Studies 76 (3): 1071–1102,
https://econpapers.repec.org/article/ouprestud/v_3a76_3ay_3a2009_3ai_3a3_

3ap_3a1071-1102.htm, Publisher: Review of Economic Studies Ltd.

Lim, Nayeon, and Lisa-Marie Duletzki. 2023. “The Effects of Public Childcare Expansion on
Child Penalties - Evidence From West Germany.”

Lloyd, S. 1982. “Least squares quantization in PCM.” IEEE Transactions on Information Theory
28 (2): 129–137. 10.1109/TIT.1982.1056489, Conference Name: IEEE Transactions on
Information Theory.

37

http://dx.doi.org/10.3982/ECTA8220
http://dx.doi.org/10.2307/1913103
http://dx.doi.org/10.1017/CBO9781139025751
http://dx.doi.org/10.1017/CBO9781139025751
http://dx.doi.org/10.3386/w32204
http://dx.doi.org/10.1214/23-EJS2157
http://dx.doi.org/10.1257/pol.20210346
http://dx.doi.org/10.1257/pol.20210346
http://dx.doi.org/10.1257/app.20180010
https://econpapers.repec.org/article/ouprestud/v_3a76_3ay_3a2009_3ai_3a3_3ap_3a1071-1102.htm
https://econpapers.repec.org/article/ouprestud/v_3a76_3ay_3a2009_3ai_3a3_3ap_3a1071-1102.htm
http://dx.doi.org/10.1109/TIT.1982.1056489


Lundborg, Petter, Erik Plug, and Astrid Würtz Rasmussen. 2024. “Is There Really a Child
Penalty in the Long Run? New Evidence from IVF Treatments.” SSRN Electronic Journal.
10.2139/ssrn.4813455.

Muris, Chris, and Konstantin Wacker. 2022. “Estimating interaction effects with panel data.”
November. 10.48550/arXiv.2211.01557, arXiv:2211.01557 [econ].

Nie, X, and S Wager. 2021. “Quasi-oracle estimation of heterogeneous treatment effects.”
Biometrika 108 (2): 299–319. 10.1093/biomet/asaa076.

Rabaté, Simon, and Sara Rellstab. 2021. “The Child Penalty in the Netherlands and its
Determinants.” CPB Discussion Paper. 10.34932/TRKZ-QH66, Publisher: CPB Netherlands
Bureau for Economic Policy Analysis Version Number: CPB discussion paper, 424.

Robinson, P. M. 1988. “Root-N-Consistent Semiparametric Regression.” Econometrica 56 (4):
931–954. 10.2307/1912705, Publisher: [Wiley, Econometric Society].

Semenova, Vira, and Victor Chernozhukov. 2021. “Debiasedmachine learning of conditional
average treatment effects and other causal functions.” The Econometrics Journal 24 (2): 264–
289. 10.1093/ectj/utaa027.

Sun, Liyang, and Sarah Abraham. 2021. “Estimating dynamic treatment effects in event
studies with heterogeneous treatment effects.” Journal of Econometrics 225 (2): 175–199.
10.1016/j.jeconom.2020.09.006.

Yanagimoto, Kazuharu. 2024. “Why not Choose a Better Job? Flexibility, Social Norms, and
Gender Gaps in Japan.” March, https://www.cemfi.es/ftp/wp/2405.pdf.

38

http://dx.doi.org/10.2139/ssrn.4813455
http://dx.doi.org/10.2139/ssrn.4813455
http://dx.doi.org/10.48550/arXiv.2211.01557
http://dx.doi.org/10.1093/biomet/asaa076
http://dx.doi.org/10.34932/TRKZ-QH66
http://dx.doi.org/10.2307/1912705
http://dx.doi.org/10.1093/ectj/utaa027
http://dx.doi.org/10.1016/j.jeconom.2020.09.006
http://dx.doi.org/10.1016/j.jeconom.2020.09.006
https://www.cemfi.es/ftp/wp/2405.pdf


Figures

Figure I: Heterogeneity in child penalties (CP)

(a) Distribution of Individual CP

(b) Different CP Paths (K-Means)

Notes: These figures present the variation in child penalty (CP) estimates. Figure Ia plots the marginal distribu-
tions of τ̃i,h as described in Section 3.2 for earnings, by time relative to first childbirth and genders, pooled across
all birth cohorts and education. The dots represent the mean of each distribution. Figure Ib shows the results
from applying a K-means algorithm to the vector of estimated child penalties τ̃ i and classifying all individuals of
the same gender into three groups.
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Figure II: Childcare supply expansion

(a) Distribution of childcare index by municipality

(b) Simplified 2× 2 DiD design

Notes: These figures present the variation in childcare supply per preschool-aged children across municipalities
from 1999 to 2016.Our childcare supply index (CCI) for each municipality is calculated by dividing the number
of childcare jobs in a given municipality m and year t (N jobs

m,t ) by the number of children under 5 years of age
in the same locality (N children

m,t ). The vertical line illustrates the timing of the 2005 Dutch childcare expansion
reform. Panel (a) illustrates the substantial variation in childcare availability between different municipalities
and the large increase due to the 2005 childcare expansion reform. Dots represent the mean CCI in a given year,
whereas the shaded area represents the distribution ofCCI across municipalities in that year. Panel (b) illustrates
the equivalent simplified 2×2 DiD design, where the time variation is binary (gray area) and treatment is binary
(see Section 4.4). The pre-treatment period includes individuals at h = −1, . . . , 5 in the period 2000-2005 as
fully non-treated. The post-treatment period comprises individuals at h = −1, . . . , 5 in the period 2011-2016
deemed fully treated. Treatment is defined as municipalities with an expansion of at least 10 percentage points
in CCI between pre- and post-periods.
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Figure III: Correlation between Childcare Provision Levels and Child Penalties

(a) Earnings

(b) Participation

Notes: This figure presents the correlation between child penalties (CP) and the childcare provision index (CCI).
We aggregate the estimated individual CP at the municipality times year-of-conception level, following the em-
pirical strategy described in Section 3.2, and plot them against the CCI. For security reasons, only the cells with
more than 10 samples are used. The line represents the estimated coefficient from regressing the individual CP
on CCI. We divide the estimation between men in blue and women in orange. We present the results for each
estimate of the year relative to birth (h). Figure IIIa presents the correlations using CP estimates for earnings.
Similarly, Figure IIIb presents the correlations using CP estimates for participation. Our CCI for each munici-
pality is calculated by dividing the number of childcare jobs in a given municipality m and year t (N jobs

g,t ) by the
number of children under 5 years of age in the same locality (N children

g,t ).
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Figure IV: Effect of the childcare provision expansion on child penalties of earnings

(a) Ei − 1

(b) Ei + h

Notes: This figure presents the effect of the childcare provision expansion on child penalties (CP) in earnings,
split by the highest education attained. We use the specification in (6) and its generalization discussed in 4.3. In
particular, we regress the individual-level child penalties τ̂BJSi,h of earnings on the childcare index in the period
before childbirth, CCIg(i),Ei−1, and the levels of the contemporaneous policy, CCIg(i),Ei+h, with fixed effects of
the municipality at childbirth g(i), event time Ei, and the age at childbirth Ai. We split the estimation between
men (blue) and women (orange) and by final education attainment. IVa presents the coefficients and their 95%
confidential intervals for CCIg(i),Ei−1 and IVb for CCIg(i),Ei+h. Our childcare supply index (CCI) for each
municipality is calculated by dividing the number of childcare jobs in a given municipality m and year t (N jobs

g,t )
by the number of children under 5 years of age in the same locality (N children

g,t ).
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Figure V: Effect of childcare expansion: one-step approach

Notes: This figure presents discrete difference-in-differences estimates of the effects of the childcare expansion on
child penalties, described in Section 4.4. The pre-/post-period are 2000-2005 and 2011-2016, and the treatment
group is defined as the municipality where the childcare index increased by 10 percentages points from the pre-
period to the post-period. Our childcare supply index (CCI) for each municipality is calculated by dividing the
number of childcare jobs in a given municipality m and year t (N jobs

g,t ) by the number of children under 5 years
of age in the same locality (N children

g,t )
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A Figures and tables

Table A.1: Diagnostics of the childcare provision expansion policy and timing of childbirth

pbg,t pbg,t − pb−1
g,t−1

(1) (2)
CCIg,t−1 0.003

(0.008)
CCIg,t−1 − CCIg,t−2 0.004

(0.009)
N 218,416 188,115
R2 0.310 0.000
FE: Municipality (g) × Age (t− b) X

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
Notes: The table presents the relationship between the conditional probability of having a child
and the lagged levels of the childcare index. In the first column, we estimate a linear equation
via OLS using the conditional probability of having a child in a given period as the outcome
and the lagged level of the childcare index with the interaction of municipality and age-fixed
effects as regressors. In the second column, we use the difference in conditional probabilities
as the outcome and the difference in lagged policy levels as the regressor. See Appendix B.6
for the relevant discussion.
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Table A.2: Placebo analysis of childcare index and pre-period child penalties (earnings)

(a) Men

High School Vocational Bachelor’s
τ̃i,−3 τ̃i,−2 τ̃i,−1 τ̃i,−3 τ̃i,−2 τ̃i,−1 τ̃i,−3 τ̃i,−2 τ̃i,−1

CCIg(i),Ei−3 -0.205 -0.316 0.157 0.079 -0.036 0.008 0.088 0.065 -0.038
(0.201) (0.271) (0.218) (0.071) (0.080) (0.096) (0.084) (0.092) (0.104)

CCIg(i),Ei−2 0.152 0.170 0.089 -0.073 0.089 0.137 0.118 0.157 0.209
(0.221) (0.261) (0.246) (0.078) (0.103) (0.100) (0.120) (0.146) (0.158)

CCIg(i),Ei−1 0.002 -0.085 0.254 0.127* 0.100 0.062 0.033 0.063 0.211
(0.174) (0.250) (0.205) (0.057) (0.080) (0.081) (0.137) (0.133) (0.139)

N 26,823 26,823 26,823 72,242 72,242 72,242 34,920 34,920 34,920
R2 0.018 0.017 0.019 0.009 0.010 0.011 0.015 0.015 0.017
Municipality FE X X X X X X X X X
Event year FE X X X X X X X X X
Age at event FE X X X X X X X X X

+ p < 0.1, * p < 0.05, ** p < 0.01
(b) Women

High School Vocational Bachelor’s
τ̃i,−3 τ̃i,−2 τ̃i,−1 τ̃i,−3 τ̃i,−2 τ̃i,−1 τ̃i,−3 τ̃i,−2 τ̃i,−1

CCIg(i),Ei−3 -0.292 -0.082 -0.125 -0.025 -0.022 -0.008 0.072 -0.047 0.062
(0.213) (0.208) (0.204) (0.079) (0.079) (0.090) (0.094) (0.134) (0.153)

CCIg(i),Ei−2 0.203 0.064 -0.042 0.114 0.106 0.085 0.024 0.000 -0.053
(0.236) (0.212) (0.209) (0.072) (0.085) (0.100) (0.101) (0.113) (0.139)

CCIg(i),Ei−1 0.002 0.099 -0.019 0.018 0.036 0.068 -0.006 0.049 -0.001
(0.149) (0.181) (0.216) (0.061) (0.076) (0.089) (0.103) (0.112) (0.137)

N 24,652 24,652 24,652 66,646 66,646 66,646 29,261 29,261 29,261
R2 0.022 0.026 0.027 0.011 0.014 0.015 0.019 0.019 0.023
Municipality FE X X X X X X X X X
Event year FE X X X X X X X X X
Age at event FE X X X X X X X X X

+ p < 0.1, * p < 0.05, ** p < 0.01

Notes: These tables present the pre-period relation between the childcare index
CCIg,Ei−3, . . . , CCIg,Ei−1 and the child penalties τ̃i,−3, . . . , τ̃i,−1. We run this placebo test split-
ting by gender and education and with the fixed effects of municipality, event year, and age at
first childbirth.
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Table A.3: Placebo analysis of childcare index and pre-period child penalties (Participation)

(a) Men

High School Vocational Bachelor’s
τ̃i,−3 τ̃i,−2 τ̃i,−1 τ̃i,−3 τ̃i,−2 τ̃i,−1 τ̃i,−3 τ̃i,−2 τ̃i,−1

CCIg(i),Ei−3 0.025 -0.035 0.130 0.040 -0.043 -0.054 -0.049 0.024 -0.017
(0.128) (0.128) (0.133) (0.050) (0.058) (0.063) (0.058) (0.083) (0.076)

CCIg(i),Ei−2 -0.021 0.129 -0.043 -0.015 0.094 0.158* 0.089 -0.015 0.080
(0.145) (0.178) (0.161) (0.052) (0.079) (0.063) (0.054) (0.081) (0.084)

CCIg(i),Ei−1 0.104 0.024 0.131 0.091* 0.087+ 0.017 0.027 0.071 0.062
(0.115) (0.123) (0.125) (0.039) (0.045) (0.048) (0.054) (0.058) (0.078)

N 26,823 26,823 26,823 72,242 72,242 72,242 34,920 34,920 34,920
R2 0.017 0.019 0.019 0.008 0.008 0.009 0.014 0.017 0.018
Municipality FE X X X X X X X X X
Event year FE X X X X X X X X X
Age at event FE X X X X X X X X X

+ p < 0.1, * p < 0.05, ** p < 0.01
(b) Women

High School Vocational Bachelor’s
τ̃i,−3 τ̃i,−2 τ̃i,−1 τ̃i,−3 τ̃i,−2 τ̃i,−1 τ̃i,−3 τ̃i,−2 τ̃i,−1

CCIg(i),Ei−3 0.158 0.068 0.198 0.086 0.126* 0.072 -0.013 -0.073 -0.010
(0.134) (0.153) (0.138) (0.053) (0.052) (0.063) (0.081) (0.078) (0.092)

CCIg(i),Ei−2 -0.035 0.157 -0.140 0.073 -0.009 0.098 -0.008 -0.020 -0.157
(0.149) (0.143) (0.147) (0.054) (0.063) (0.067) (0.091) (0.086) (0.099)

CCIg(i),Ei−1 0.021 0.072 0.049 -0.053 0.041 0.008 0.053 0.064 0.164
(0.116) (0.112) (0.144) (0.045) (0.047) (0.054) (0.079) (0.072) (0.100)

N 24,652 24,652 24,652 66,646 66,646 66,646 29,261 29,261 29,261
R2 0.017 0.019 0.019 0.007 0.009 0.011 0.017 0.020 0.024
Municipality FE X X X X X X X X X
Event year FE X X X X X X X X X
Age at event FE X X X X X X X X X

+ p < 0.1, * p < 0.05, ** p < 0.01

Notes: These tables present the pre-period relation between the childcare index
CCIg,Ei−3, . . . , CCIg,Ei−1 and the child penalties τ̃i,−3, . . . , τ̃i,−1. We run this placebo test split-
ting by gender and education and with the fixed effects of municipality, event year, and age at
first childbirth.
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Figure A.1: Child penalties by age at first childbirth and education level (earnings)

(a) High school

(b) Vocational

(c) Bachelor’s

Notes: This figure presents CP estimates for yearly earnings, aggregated by observables of interest—at age of first
childbirth and education level—as described in Section 3.2. Figure A.1a reports the average CP of individuals
with high school diplomas as the highest obtained degree, across age at first childbirth at all horizons. Similarly,
Figure A.1b reports for those who graduated from vocational school. Finally, Figure A.1c reports the results for
college-educated individuals.

47



Figure A.2: CP by age at first childbirth and education level (participation)

(a) High school

(b) Vocational

(c) Bachelor’s

Notes: This figure presents CP estimates for labor-market participation margin, aggregated by observables of
interest—age at first childbirth and education level—as described in Section 3.2. Figure A.2a reports the average
CP of individuals with high school diplomas as the highest obtained degree, across age at first childbirth at all
horizons. Similarly, Figure A.2b reports for those who graduated from vocational school. Finally, Figure A.2c
reports the results for college-educated individuals.
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Figure A.3: Effect of the childcare provision expansion on child penalties (earnings)

(a) Ei − 1

(b) Ei + h

Notes: This figure presents the effect of the childcare provision expansion on child penalties (CP) in earnings,
split by the highest education attained. We use the specification in (6) and its generalization discussed in 4.3. In
particular, we regress individual-level child penalties τ̂BJSi,h on the childcare index in the period before childbirth,
CCIg(i),Ei−1, and the levels of the contemporaneous policy, CCIg(i),Ei+h, with fixed effects of municipality at
childbirth g(i), event time Ei, and the age at childbirth Ai. We split the estimation between men (blue) and
women (orange) and by the final education attainment. A.3a presents the coefficients and their 95% confidence
intervals for CCIg(i),Ei−1 and A.3b for CCIg(i),Ei+h. Our childcare supply index (CCI) for each municipality is
calculated by dividing the number of childcare jobs in a given municipality g and year t (N jobs

g,t ) by the number
of children under 5 years of age in the same locality (N children

g,t ).

49



Figure A.4: Effect of the childcare provision expansion on child penalties (Participation)

(a) Ei − 1

(b) Ei + h

Notes: This figure presents the effect of childcare provision expansion on child penalties (CP) in participation,
split by the highest education attained. We use the specification in (6) and its generalization discussed in 4.3. In
particular, we regress the individual-level child penalties τ̂BJSi,h on the childcare index in the period before child-
birth, CCIg(i),Ei−1, and the levels of the contemporaneous policy, CCIg(i),Ei+h, with fixed effects of municipality
at childbirth g(i), event time Ei, and the age at childbirth Ai. We split the estimation between men (blue) and
women (orange) and by the final education attainment. A.4a presents the coefficients and their 95% confidence
intervals for CCIg(i),Ei−1 and A.4b for CCIg(i),Ei+h. Our childcare supply index (CCI) for each municipality is
calculated by dividing the number of childcare jobs in a given municipality g and year t (N jobs

g,t ) by the number
of children under 5 years of age in the same locality (N children

g,t ).
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B Theoretical details

B.1 Probability model
Consider a set of groups G, where |G| is finite, with g ∈ G being a generic group. Consider a random element
W—the observed policy intervention. For each g ∈ G, let PW|g be the g-specific distribution ofW .

Consider a unit characterized by observed attributes X with a birth cohort B being one of them. Also, each
unit is characterized by a random function ofW : E⋆(·)—the potential event calendar time. The relevant potential
event time is right-censored:

E(·) := E⋆(·)1{E⋆(·) ≤ Tmax}+∞1{E⋆(·) > Tmax},

where Tmax is deterministic and known. Finally, each unit is characterized by potential outcomes Yt(·), which are
functions ofW and are observed for t ∈ [B +Amin, B +Amax], whereAmin < Amax are deterministic and known.
We collect all these quantities into a random function of W : D(·) := (YB+Amin(·), . . . , YB+Amax(·), E(·), X). For
each g we let PD(·)

|g be the g-specific distribution of D(·). For consistency, we assume that B + Amax ≤ Tmax a.s.
for each group g.

We make our first assumption about the data.

Assumption B.1. (Strict Exogeneity)
For each g define the product distribution:

PD
|g := PW|g × PD(·)

|g . (B.1)

Let (Wg, YB+Amin(·), . . . , YB+Amax(·), E(·), X) be a draw from PD
|g. For each a ∈ [Amin, Amax] define YB+a :=

YB+a(Wg), E := E(Wg). The observed data are (YB+Amin
, . . . , YB+Amax

, E,X,Wg).

This assumption implies that the policy variable Wg is independent of unit-level potential outcomes and
fixed attributes but has a g-specific distribution. The identification in this setup reduces to accounting for the
differences in the distribution of Wg across groups. Below, we will discuss several scenarios of how this can be
done. Note that the resulting probability model is g-specific, and we do not put any probability measure on the
set G itself. As a result, the probability model can be viewed as a fixed population one, with groups playing the
role of the population. Alternatively, it can be viewed as a superpopulation model where we condition on the
realized groups.

In what follows, for brevity we use Eg[·] to denote the g-specific expectation conditional on the realizedWg,
e.g,

Eg[YB+a|E,X] := E[YB+a|E,X,Wg].

For each group g the conditional expectation Eg[YB+a|E,X] is a g-specific random variable.

Remark B.1. Assumption B.1 implicitly fixes all other g-specific factors related toWg. Such conditioning, in prin-
ciple, canmake the distribution of PW|g extremely complicated. To see this, suppose thatWg = (Wg,1, . . . ,Wg,Tmax)

and there is another, unobserved shockUg = (Ug,1, . . . , Ug,Tmax
), which is also relevant for the potential outcomes.

For simplicity suppose that each (Wg,t, Ug,t) ∼ N (0,Σ), independently across t. The marginal distribution ofWg,t

is simple,Wg,t ∼ N (0, σ2
w), and given data from multiple groups or a long time series, we can learn σ2

w. However,
the conditional distribution is very complicated: Wg,t| (Ug,t = ug,t) ∼ N (βug,t, σ

2
cond). In particular, for each g

and t, the mean is different and equal to βug,t. We cannot hope to learn these parameters of the conditional
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distribution regardless of how many groups and periods we observed. This problem does not arise in random-
ized experiments, in which the experimental protocol specifies the distribution ofWg and guarantees thatWg is
independent of any unobservables.

B.2 Measurement model and event times
Using the notation introduced previously, we state our next assumption.

Assumption B.2. (Measurement model)
For any g ∈ G, any t ∈ [B +Amin, B +Amax] and any w we have:

Yt(w) = α(w) + λg,t(X,w) +
∑
h≥0

τeh(w){t− E(w) = h}{E(w) = e}+ εt(w),

E[εt(w)|α(w), τ (w), X,E(w)] = 0,

where α(w) and {τeh(w)}e,h, εt(w) are random variables with g-specific distributions, and λg,t(·) is a deterministic
function.

This assumption imposes a particular structure on the potential outcomes. We can interpret it as policy
invariance: The relationship between the objects we want to measure, τeh(w), and the outcomes does not depend
on the realized policy.

Our next assumption restricts the relationship between E(w) and τeh(w).

Assumption B.3. (Event times)
Either (a) for each g ∈ G and any w we have E(w) ≡ E, or (b) for each g ∈ G and any w we have

E(w) ⊥⊥ τeh(w)|X.

This assumption guarantees that the policy of interest either does not influence the event times or the event
times are conditionally random within the subpopulations defined by X. The first assumption is appropriate in
cases in which there is no observed reaction of E to policy. Conversely, the second assumption is pertinent if we
considerE(w) as a random event rather than a decision influenced by other parameters of the model. Specifically,
if E(w) is determined in an experiment, the last statement holds by design.

B.3 Identification
We fix two user-specified parameters, h0 ≤ 0 and h1 ≥ 0— the minimum and maximum horizon over which we
aim to analyze ULES, respectively. We make the following assumption.

Assumption B.4. (Full support)
Random variable E−B has full conditional support, i.e., for any g ∈ G, w, and a ∈ {Amin, . . . , Amax}, E[1{E(w)−
B = a}|X] > 0 X-a.s.

This simplifying full-support assumption does not affect the identification logic but makes the exposition and
statistical analysis more straightforward. In particular, it allows us to define a relevant set of relative event times,
A(h0, h1) := {Amin − h0 + 1, . . . , Amax − h1 + h0 − 1} independently of X.
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For a given g, h0 ≤ h ≤ h1 and a ∈ A(h0, h1) we have(
λg,B+a+h(X)− 1

a−Amin + h0

a−1+h0∑
l=Amin

λg,B+l(X)

)
=

E

[(
YE+h −

1

E −B −Amin + h0

E−1+h0∑
l=Amin

YB+l(X)

)
1{E −B > a+ h1 − h0}

E[1{E −B > a+ h1 − h0}|X]
|X

]
,

where the RHS is well-defined thanks to Assumption B.4. Finally, for a given g and h, we define

τ̂h := YE+h −
1

E −B −Amin + h0

E−B−1+h0∑
l=Amin

YB+l−(
λg,E+h(X)− 1

E −B −Amin + h0

E−1+h0∑
l=Amin

λg,B+l(X)

)
= τEh (Wg) + νEh ,

as long as E −B ∈ A(h0, h1). The following lemma describes the properties of τ̂h.

Lemma 1. Suppose Assumptions B.1 - B.4 hold. Then for any g ∈ G and 0 ≤ h ≤ h1, and a ∈ A(h0, h1) we have

Eg
[

τ̂h1{E −B = a}
E[1{E −B = a}|X]

|X
]
=

Eg[τB+a
h (Wg)|E −B = a,X], if part (a) of Assumption B.3 holds,

Eg[τB+a
h (Wg)|X], if part (b) of Assumption B.3 holds.

Proof. Using Assumption B.1,B.2 and B.4 and the definition of τ̂h we have

Eg
[

τ̂h1{E −B = a}
E[1{E −B = a}|X]

|E,X
]
= Eg

[
(τEh (Wg) + νh)1{E −B = a}

E[1{E −B = a}|X]
|E,X

]
=

Eg

[
τB+a
h (Wg)1{E −B = a}
E[1{E −B = a}|X]

|E,X

]
.

If part (a) of Assumption B.3 holds we have by definition

Eg

[
τB+a
h (Wg)1{E −B = a}
E[1{E −B = a}|X]

|X

]
= Eg

[
τB+a
h (Wg)|E −B = a,X

]
.

Alternatively, if part (b) of Assumption B.3 holds, then we have

Eg

[
τB+a
h (Wg)1{E −B = a}
E[1{E −B = a}|X]

|X

]
= Eg

[
τB+a
h (Wg)1{E(Wg)−B = a}
E[1{E(Wg)−B = a}|X]

|X

]
=

Eg
[
τB+a
h (Wg)|X

]

This result, while straightforward, shows the different implications of part of Assumption B.3. For instance,
the first part does not allow us to distinguish between state dependence and selection, while the second does.

53



B.3.1 Known PW
|g

In this subsection, we focus on environments in which the PW|g distribution is either known by design or can be
identified from the available data. This assumption is natural if Wg is assigned in an experiment (perhaps with
a g-specific design), and thus its distribution is known to the analyst. Alternatively, suppose we assume that
PW|g does not vary across g, and we have access to data from many groups. In that case, we can identify the
parameters of the distribution ofWg by pooling the information across groups. The latter structure is analogous
to standard analysis under unconfoundedness (see Imbens and Rubin (2015) for the textbook treatment), where
the distribution of the treatment variable is unknown but is constant across well-defined subpopulations.

To state our next proposition, we introduce additional notation and define the objects of interest. Let γ(w) be
a bounded function of w such that

∫
γ(w)dw = 0 and

∫
wγ(w)dw = 1, where the integrals are computed using

a relevant measure on the domain ofW (e.g., counting in caseW is discrete or Lebesgue if it is continuous) and
define

δeh(γ) :=

∫
γ(w)τeh(w)dw.

To understand the logic behind this quantity, suppose w ∈ {0, 1}. Then the only possible contrasts are γ(1) =

−γ(0) = 1 and δeh(γ) is the conventional unit-specific treatment effect τeh(1)− τeh(0). Expectations of the objects
of this type will be our estimands of interest. In particular, we consider two types of expectations:

δeh(γ, x, e) := E[δeh(γ)|X = x,E = e]

and
δeh(γ, x) := E[δeh(γ)|X = x].

Observe that in δeh(γ, x, e), dependence on e appears twice: as the index of the relevant event time and the index
of the subpopulation, we compute the expectation for.

Proposition 1. (Identification with known PW|g )
Suppose Assumptions B.1 - B.4 hold. Suppose that PW|g is known and has a density fg(·) (with respect to the relevant
measure on the domain of W ). Then for any contrast γ(·) we have for each group g ∈ G, 0 ≤ h ≤ h1, and
a ∈ A(h0, h1)

E
[
γ(Wg)

fg(Wg)

τ̂h1{E −B = a}
E[1{E −B = a}|X]

]
=

E
[
δB+a
h (γ,X,B + a)

]
, if part (a) of Assumption B.3 holds,

E[δB+a
h (γ,X)], if part (b) of Assumption B.3 holds.

as long as |γ(w)τeh(w)| ≤ Z and E[Z] <∞.

Proof. Using the results of Lemma 1 we have if part (a) of Assumption B.3 holds

E
[
γ(Wg)

fg(Wg)

τ̂h1{E −B = a}
E[1{E −B = a}|X]

]
=

E
[
E
[
γ(Wg)

fg(Wg)
τB+a
h (Wg)|E −B = a,X

]]
= E

[
E
[
δB+a
h (γ,X,B + a)|E −B = a,X

]]
=

E
[
δB+a
h (γ,X,B + a)

]
,

where we used Fubini’s theorem to get the second equality. Alternatively, if part (b) of Assumption B.3 holds,
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then we get, again using Lemma 1 and Assumption B.1,

E
[
γ(Wg)

fg(Wg)

τ̂h1{E −B = a}
E[1{E −B = a}|X]

]
= E

[
γ(Wg)

fg(Wg)
Eg[τB+a

h (Wg)|X]

]
= E[δB+a

h (γ,X)].

Proposition 1 provides a group-specific moment that identifies a relevant causal effect. In the statistical
analysis, we can aggregate these moment conditions (across groups) to construct an unbiased estimator for an
average (across groups) causal estimand.

B.3.2 Partially known PW
|g

This section considers environments in which PW|g is not known, nor can it be identified from the data. This
premise is reasonable in observational studies, in which the g-specific probability distribution ofWg can never be
fully learned unless we make restrictive assumptions. Instead, we will impose restrictions on certain features of
PW|g .

In our analysis, we will focus on a practically relevant case in whichWg has a time-series structure:

Wg = (Wg,1, . . . ,Wg,Tmax).

Given this structure, we restrict the causal model for τeh(w).

Assumption B.5. (Linear time-homogeneous dynamic model)
For any e, h and w we have for each g ∈ G

τeg,h(w) = βeh +

h+1∑
j=0

δj,hwe+h−j ,

where βeh and {δj,h}h+1
j=0 are g-specific random variables.

This model imposes several restrictions on the underlying potential outcomes. The first is linearity: We
assume that the interactions of policies from different periods do not matter for potential outcomes. Second, we
impose a dynamic structure, assuming only policy levels from periods e− 1, . . . , e+ h are relevant. This imposes
the non-anticipation assumption (future policies are irrelevant to current outcomes) and limited dynamics (lags
in distant periods are irrelevant). The final restriction is time homogeneity: The effect of the policy does not
structurally change with e—i.e., there is no δej,h.

We make the following assumption about the structure of PW|g .

Assumption B.6. (Restricted mean)
For any g ∈ G and t we have

E[Wg,t] = ag + bt.

This assumption imposes a particular model for the mean of Wg,t. Note that if we observe a finite number
of periods or a finite number of groups, then the parameters {ag, bt}g,t cannot be identified from the data. As a
result, we cannot learn even the first moment of PW|g from the data.

For each h and e we define δ⊤h := (δ0,h, . . . , δh+1,h) and(
∆W e

g,h

)⊤
:= (Wg,e+h −Wg,e+h−1, . . . ,Wg,e−1 −Wg,e−2).
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Also, for each h < h1, g ∈ G and e we define

∆τ̂B+a
h := τ̂h

(
1{E −B = a}

E[1{E −B = a}|X]
− 1{E −B = a− 1}

E[1{E −B = a− 1}|X]

)
The next proposition provides us with a g-specific moment condition.

Proposition 2. (Identification with partially known PW|g )
Suppose Assumptions B.1, B.2, and B.4 - B.6 hold. Fix 0 ≤ h ≤ h1 . Suppose either part (a) of Assumption B.3 holds
and E[δh|X,E] = E[δh|X] or, alternatively, part (b) of Assumption B.3 holds. Then for any {a, a− 1} ∈ A(h0, h1)

we have
V[∆WB+a

g,h |X]δg,h(X) = E[(∆WB+a
g,h − E[∆WB+a

g,h ])∆τ̂B+a
h |X],

where δg,h(X) := E[δh|X = x].

Proof. Using Lemma 1 we get if part (a) of Assumption B.3 is satisfied:

Eg
[
∆τ̂B+a

h |X
]
= Eg

[
τB+a
h (Wg)|X,E −B = a

]
− Eg

[
τB+a−1
h (Wg)|X,E −B = a− 1

]
.

Next, using Assumption B.5 and the premise of the proposition, we get

Eg
[
τB+a
h (Wg)|X,E −B = a

]
− Eg

[
τB+a−1
h (Wg)|X,E −B = a− 1

]
=

Eg
[
βB+a
h |X,E −B = a

]
− Eg

[
βB+a−1
h |X,E −B = a− 1

]
+ δ⊤g,h(X)∆WB+a

g,h .

The rest of the proof follows using Assumption B.1 and B.6. Alternatively, if part (b) of Assumption B.3 is satisfied,
the computation is more straightforward, and we have using Lemma 1

Eg
[
∆τ̂B+a

h |X
]
= Eg

[
τB+a
h (Wg)− τB+a−1

h (Wg)|X
]
.

The rest then follows in the same way as before.

This result shows that we can use the knowledge of the first two moments of ∆Wg,t to construct a moment
for the average value of the relevant coefficients. If part (b) of Assumption B.3 is satisfied, then this result does
not rely on additional restrictions. However, if part (b) of Assumption B.3 is satisfied, then to achieve the same
result we need to impose restrictions on the underlying heterogeneity and assume E[δh|X,E] = E[δh|X].

To understand why Proposition 2 is useful in practice, suppose that we observe independent data from
multiple groups g ∈ G.23 Then we have for any {a, a− 1} ∈ A(h0, h1)

1

|G|
∑
g∈G

(∆W b+a
g,h − 1

|G|
∑
g∈G

∆W b+a
g,h )∆τ b+ag,h (x,Wg) =

1

|G|
∑
g∈G

E[(∆W b+a
g,h − E[∆W b+a

g,h ])∆τ b+ag,h (x,Wg)] +Op

(
1√
|G|

)
=

1

|G|
∑
g∈G

V[∆W b+a
g,h ]δg,h +Op

(
1√
|G|

)
,

23In the discussion below, we rely on the statistical model described in the next section that postulates that
policy variables are independent across groups.
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where ∆τ b+ag,h (x,Wg) := Eg[∆τ̂B+a
h |X = x,E −B = a]. Similarly, we have

1

|G|
∑
g∈G

(∆W b+a
g,h − 1

|G|
∑
g∈G

∆W b+a
g,h )(∆W b+a

g,h − 1

|G|
∑
g∈G

∆W b+a
g,h )⊤ =

1

|G|
∑
g∈G

V[∆W b+a
g,h ] +Op

(
1√
|G|

)
.

As a result:

δ̂h(x) :=

 1

|G|
∑
g∈G

(∆W b+a
g,h − 1

|G|
∑
g∈G

∆W b+a
g,h )(∆W b+a

g,h − 1

|G|
∑
g∈G

∆W b+a
g,h )⊤

−1

×

1

|G|
∑
g∈G

(∆W b+a
g,h − 1

|G|
∑
g∈G

∆W b+a
g,h )∆τ b+ag,h (x,Wg) =

 1

|G|
∑
g∈G

V[∆W b+a
g,h ]

−1

×

 1

|G|
∑
g∈G

V[∆W b+a
g,h ]δg,h(x)

+Op

(
1√
|G|

)
. (B.2)

This result is directly useful if δg,h(x) = δh(x)—i.e., there is no heterogeneity in averages across groups. If such
heterogeneity exists, we need to strengthen Assumption B.6 and either assume that V[∆W b+a

g,h ] does not vary
over g or that it can be estimated. In the latter case, we can learn the average effect (across groups) by using
V[∆W b+a

g,h ]−1(∆W b+a
g,h − 1

|G|
∑
g∈G ∆W b+a

g,h ) as instruments; see Goldsmith-Pinkham et al. (2024) for further
details and alternative procedures.

Even if V[∆W b+a
g,h ] is known or can be identified, Proposition 2 is not directly useful if part (a) of Assumption

B.3 holds but E[δh|X,E] ̸= E[δh|X]—i.e., there is systematic heterogeneity in coefficients across units with
different observed event times. To address this case, we need to use moments in levels analogously to Arellano
and Bover (1995):

E[(∆W b+a
g,h − E[∆W b+a

g,h ])τ b+ag,h (x)] = E[(∆W b+a
g,h − E[∆W b+a

g,h ])(W b+a
g,h )⊤]δg,h(x, b+ a).

Again, if either (a) δg,h(x, e) does not vary over g or (b) E[(∆W b+a
g,h − E[∆W b+a

g,h ])(W b+a
g,h )⊤] can be identified

from the data, this moment restriction can be directly used to construct an estimator.
There are two problems with this approach in practice. First, to use it we need to assume that moments

E[(∆W b+a
g,h − E[∆W b+a

g,h ])(W b+a
g,h )⊤] are well behaved and the corresponding matrices can be inverted. Second,

this IV approach does not have the double-robustness property discussed by Arkhangelsky and Imbens (2022);
Arkhangelsky et al. (2024a), unlike other moments discussed above. See the discussion in Section B.5.

Remark B.2. Assumption B.6 specified a particular model for E[Wg,t], but in applications other models can be
more appropriate. For instance, we can consider a dynamic model of the type analyzed by Holtz-Eakin et al.
(1988) and write

Wg,t = bt + αgψt + ρWg,t−1 + νg,t, E[νg,t(1,Wg,t−1, . . . )] = 0,

where αg, bt, ψt, and ρ are unknown parameters. This model implies that for each g the mean satisfies the
following recursive formula:

E[Wg,t] = bt + αgψt + ρE[Wg,t−1],

with unrestricted initial conditions. It is thus substantially more general than the model in Assumption B.6.
However, this additional generality does not present a major problem for identification. Consider the following
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transformation:

W̃g,t :=Wg,t − ρWg,t−1 −
ψt
ψt−1

(Wg,t−1 − ρWg,t−2) = bt −
ψt
ψt−1

bt−1 + νg,t −
ψt
ψt−1

νg,t−1.

Holtz-Eakin et al. (1988) demonstrate that ρ and ψt

ψt−1
are identified from the data on multiple groups and thus

W̃g,t can be constructed. Applying the same transformation to our causal model, we can show a significant
generalization of Proposition 2.

Remark B.3. Assumption B.6 is directly connected to the literature on formula instruments (Borusyak and Hull,
2023, 2024; Borusyak et al., 2024a). The assumption that the first moment of the appropriate transformation
of Wg,t is known (identified) is needed to recenter the instrument. The restrictions for the second moment are
required to address the contamination bias, as defined by Goldsmith-Pinkham et al. (2024). The above discussion
connects these ideas with the identification results for panel data models.

B.4 Statistical analysis

B.4.1 Statistical model

The statistical model is based on the probability model described above. We assume that the group-specific
shocks are realized independently for each group, and then ng units (with ng being deterministic) are randomly
sampled from each group. Formally, the distribution of the realized data takes the following form:

PD = ×g∈G

(
PW|g ×

(
×ng

i=1P
D(·)
|g

))
.

The total number of observed units is thus n :=
∑
g∈G ng. For a given unit i, we let g(i) be the group from which

the data for this unit were generated.
Finally, for each unit i, we convert the g-specific random variables defined before into i-specific random

variables through the mapping i→ g(i). For instance, Eg(i)[Yi,Bi+a|Ei, Xi] is an i-specific random variable equal
to E[YB+a|E = Ei, X = Xi,Wg =Wg(i)], where g = g(i) and (YB+a, E,X,Wg) is an independent random draw
from PD

|g.

B.4.2 Estimation

The first step of our analysis relies on constructing τ̂i,h. We do this in two steps following the approach described
by Borusyak et al. (2024b). First, we estimate

(α̂i, λ̂g,t(·)) := arg min
(αi,λg,t(·))

∑
(i,t):Ei≥t−h0

(Yi,t − αi − λg(i),t(Xi))
2,

Since our covariates are discrete, we consider a completely unrestricted class of (g, t)-specific functions λg,t(·).
Next, we compute for h ∈ {h0, . . . , h1}:

τ̂BJSi,h := Yi,Ei+h − α̂i − λ̂g(i),t(Xi).

We use Str to denote the sample of units for which we can construct τ̂BJSi,h for all values of h ∈ {h0, . . . , h1} and
use τ̂BJSi to denote the (h1 − h0 + 1)-dimensional ULES.
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B.4.3 Statistical results

Unweighted regression: In the analysis in this section, we maintain part (a) of Assumption B.3. Define
W e

g,h := (Wg,e+h, . . . ,Wg,e−1). For each h ∈ {0, . . . , h1} our estimator takes the following form:

(
δ̂h, α̂h(·), β̂h(·)

)
:= arg min

α(·),β(·),δh

∑
i∈Str

(
τ̂BJSi,h − α(Ei, Xi)− β(g(i), Xi)− δ⊤hW

e
g,h

)2
. (B.3)

Define

π̂g :=
ng
n
, π̂x|g :=

∑
i 1{Xi = x, g(i) = g}

ng
, π̂a|x,g :=

∑
i∈Str

1{Xi = x, g(i) = g,Ei −Bi = a}∑
i 1{Xi = x, g(i) = g}

,

with the convention that π̂a|x,g = 0 if
∑
i 1{Xi = x, g(i) = g} = 0. Next, we define

τ̂ b+ag,h (x,Wg) :=

∑
i:∈Str,g(i)=g,Xi=x,Ei−Bi=a

τ̂BJSi,h∑
i∈Str

1{Xi = x, g(i) = g,Ei −Bi = a}

Formally this object is well-defined only if
∑
i∈Str

1{Xi = x, g(i) = g,Ei − Bi = a} > 0, but we can ignore this
because it is multiplied by π̂a|x,g.

It is straightforward to see that the problem (B.3) is equivalent to the following one:(
δ̂h, α̂h(·), β̂h(·)

)
:=

arg min
α(·),β(·),δh

∑
g∈G

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|x,g

(
τ̂ b+ag,h (x,Wg)− α(b+ a, x)− β(g, x)− δ⊤hW

b+a
g,h

)2
.

For any g, x and a ∈ A(h0, h1) define the conditional probability:

π̂ca|g,x :=
π̂a|g,x∑

l∈A(h0,h1)
π̂l|g,x

,

with the convention that π̂ca|g,x = 0 if
∑
l∈A(h0,h1)

π̂l|g,x = 0.
We use this probability to define the following projection:

W̃
b+a

g,h (x) := W b+a
g,h −

∑
l∈A(h0,h1)

π̂cl|g,xW
b+l
g,h − E

W b+a
g,h −

∑
l∈A(h0,h1)

π̂cl|g,xW
b+l
g,h |{Xi, Ei}i∈g

 .
We also consider the following prediction problem:

α̂h(·) := arg min
αh(·)

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|x,g

∥∥∥W̃ b+a

g,h (x)−αh(b+ a, x) +
∑

l∈A(h0,h1)

π̂cl|g,xαh(b+ l, x)
∥∥∥2
2
,

and define the corresponding residual:

Ŵ
b+a

g,h (x) = W̃
b+a

g,h (x)−

α̂h(b+ a, x)−
∑

l∈A(h0,h1)

π̂cl|g,xα̂h(b+ l, x)

 .
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For each (g, x, a) we define

τ b+ag,h (x,Wg) := Eg[τB+a
h |X = x,E −B = a], βb+ag,h (x) := Eg[βB+a

h |X = x,E −B = a].

Define the error:
ζb+ag,h (x) := τ̂ b+ag,h (x,Wg)− τ b+ag,h (x,Wg).

For each (g, x, a) we define ζ̃b+ag,h (x) and β̂b+ag,h (x) analogously to W̃
b+a

g,h (x) and Ŵ
b+a

g,h (x) above.
We define the following set of functions

F :=
{
νg,h(·) :

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,x∥νg,h(b+ a, x)∥22 = 1,

νg,h(b+ a, x) = αh(b+ a, x)−
∑

l∈A(h0,h1)

π̂ca|g,xαh(b+ l, x), for some αh(b+ l, x)
}

Heuristically, for each h these are functions that have a unit norm in the L2 space generated by the empirical
measure on (g, x, a) and have a special structure generated by the underlying functions αh(b + a, x). Next, we
define the conditional variance

Σb+ag,h (x) := E
[
W̃

b+a

g,h (x)
(
W̃

b+a

g,h (x)
)⊤

|{Ei, Xi}i∈g
]
,

which we use to define another variance, which will be the variance of the OLS estimator,

Σ :=

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h+1)

π̂a|g,xΣ
b+a
g,h (x)

−1

×

∑
g

π̂2
gV

∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xW̃
b+a

g,h (x)(β̂b+ag,h (x) + ζ̂b+ag,h (x))|{Ei, Xi}i∈g

×

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h+1)

π̂a|g,xΣ
b+a
g,h (x)

−1

.

We make the following high-level assumption:

Assumption B.7. (High-level restrictions)
As n and |G| approach infinity the following statements hold conditionally on {Ei, Xi}ni=1 with probability approach-
ing 1: (a) the fixed effects do not overfit

sup
νe

g,h(x)∈F

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,x (νg,h(b+ a, x))
⊤
W̃

b+a

g,h

 = op(1);

(b) the conditional LLN holds

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xW̃
b+a

g,h (x)
(
W̃

b+a

g,h (x)
)⊤

=
∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xΣ
b+a
g,h (x) + op(1);
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(c) the effective sample size is going to infinity

∥Σ∥op = op(1);

and (d) the conditional CLT holds∑
g

π̂2
gV

∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xW̃
b+a

g,h (x)(β̂b+ag,h (x) + ζ̂b+ag,h (x))|{Ei, Xi}ni=1

− 1
2

×

∑
g

π̂g
∑̂

x
πx|g

∑
a∈A(h0,h1)

π̂a|g,xW̃
b+a

g,h (x)(β̂b+ag,h (x) + ζ̂b+ag,h (x)) →d N (0, I).

This assumption is very mild, and we expect it to hold as |G| approaches infinity even if the group size stays
fixed as long as some mild regularity conditions are satisfied. The first part of this assumption says that two-way
fixed effects do not asymptotically overfit the relevant policy variation. It is trivially satisfied if the support of
X and E − B does not increase with n and |G|. The second part is the requirement that the conditional law of
large numbers applies. A sufficient condition for this is that

∑
g π̂

2
g = o(1) and boundedness of Wg,t. The third

restriction is a very mild requirement for the effective sample size, with
∑
g π

2
g = o(1) being a sufficient condition

as long asWg,t and potential outcomes are bounded. Finally, the last restriction is the conditional validity of the
central limit theorem, which we expect to hold under mild conditional moment restrictions.

Theorem 1. (Asymptotic behavior)
Suppose Assumptions B.1 - B.2, B.4 - B.7 hold and part (a) of Assumption B.3 holds. Suppose for all g we have
E[δh|X,E] = δ. Then, as n and |G| go to infinity we have

Σ̂− 1
2 (δ̂ − δ) →d N (0, I),

where

Σ̂ :=

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤−1

×

(∑
g

π̂2
g

∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|x,gŴ
b+a

g,h (x)(τ̂eg,h(x,Wg)− δ̂hŴ
b+a

g,h (x))

⊤

×

∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|x,gŴ
b+a

g,h (x)(τ̂ b+ag,h (x,Wg)− δ̂hŴ
b+a

g,h (x))

)×
∑

g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤−1

.

Proof. In the proof, we use the fact thatWg,t is independent of {Ei, Xi}ni=1, and thus, we can treat the latter as
fixed. We then conduct the analysis for the subset of realizations of {Ei, Xi}ni=1 on which Assumption B.7 holds,
and show that for each such realization, we have convergence in distribution. Since this set has a probability
approaching one, it implies that the same convergence holds unconditionally.
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Using the standard FWL representation of the regression coefficients, we get the following expression for δ̂h:

δ̂h =∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤−1∑

g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)τ̂ b+ag,h (x,Wg) =

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤−1∑

g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)τ b+ag,h (x,Wg)+

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤−1∑

g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)ζb+ag,h (x).

Using the second part of Assumption B.7, we have for the denominator

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤

=

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xW̃
b+a

g,h (x)
(
W̃

b+a

g,h (x)
)⊤

−

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,x×

α̂h(b+ a, x)−
∑

l∈A(h0,h1)

π̂ca|g,xα̂h(b+ l, x)

α̂h(b+ a, x)−
∑

l∈A(h0,h1)

π̂ca|g,xα̂h(b+ l, x)

⊤

=

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xΣ
b+a
g,h (x) + op(1)−

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,x×

α̂h(b+ a, x)−
∑

l∈A(h0,h1)

π̂ca|g,xα̂h(b+ l, x)

α̂h(b+ a, x)−
∑

l∈A(h0,h1)

π̂ca|g,xα̂h(b+ l, x)

⊤

.

We can bound the remaining error∥∥∥∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,x×

α̂h(b+ a, x)−
∑

l∈A(h0,h1)

π̂ca|g,xα̂h(b+ l, x)

α̂h(b+ a, x)−
∑

l∈A(h0,h1)

π̂ca|g,xα̂h(b+ l, x)

⊤∥∥∥
op

≤

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,x∥α̂h(b+ a, x)−
∑

l∈A(h0,h1)

π̂ca|g,xα̂h(b+ l, x)∥22,
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and by using standard OLS logic, we have∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,x∥α̂h(b+ a, x)−
∑

l∈A(h0,h1)

π̂ca|g,xα̂h(b+ l, x)∥22 ≤

4 sup
νg,h(x)∈F

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,x (νg,h(x))
⊤
W e

g,h

 = op(1),

where the last equality is guaranteed by the first part of Assumption B.7.
The rest follows trivially. First, we have∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤−1∑

g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)ζb+ag,h (x) =

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xΣ
b+a
g,h (x) + op(1)

−1∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xW̃
b+a

g,h (x)ζ̂b+ag,h (x).

We can decompose the other part of the estimator:∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤−1∑

g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)τ b+ag,h (x,Wg) =

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤−1∑

g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
W b+a

g,h

)⊤
δg,h(x)+

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤−1∑

g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)βb+ag,h (x)

For the target, we use that the parameter is not heterogeneous, E[δh|X,E] = δ, for all g:∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤−1∑

g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
W b+a

g,h

)⊤
δg,h(x) =

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤−1∑

g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
W b+a

g,h

)⊤
δh =

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤−1∑

g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤

δh =

δh
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For the final part, we have∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤−1∑

g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)βb+ag,h (x) =

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xΣ
b+a
g,h (x) + op(1)

−1∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xW̃
b+a

g,h (x)β̂b+ag,h (x)

We then immediately have, from the third part of Assumption B.7,

Σ− 1
2 (δ̂h − δh) →d N (0, I).

Since ∥Σ∥op → op(1), we also have that δ̂ − δ = op(1). It then follows using standard arguments that

Σ̂−1 × Σ = I + op(1).

This concludes the proof.

Theorem 1 abstracts away from all heterogeneity in effects. The limiting distribution has an additional term
if such heterogeneity is present. We can compute the probability limit of the estimator with such heterogeneity:∑

g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
Ŵ

b+a

g,h (x)
)⊤−1

×

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xŴ
b+a

g,h (x)
(
W b+a

g,h

)⊤
δg,h(x) =

∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xΣ
b+a
g,h (x)

−1∑
g

π̂g
∑
x

π̂x|g
∑

a∈A(h0,h1)

π̂a|g,xΣ
b+a
g,h (x)δg,h(x) + op(1)

Observe that even if δg,h(x) = δh(x) for all g ∈ G and V[W b+a
g,h ] does not depend on g, the resulting estimand is

not equal to a convex combination of δh(x), unlike in our analysis in the previous section. The reason for such
behavior is that the regression (B.3) induces particular (g, x, a)-specific weights that render the analysis more
complicated. To address this problem, we can use alternative weights analogous to the estimator we discussed
in Section 2.4. In particular, consider the following weighted regression:(
δ̂
WOLS

h , α̂WOLS
h (·), β̂WOLS

h (·)
)
:= arg min

α(·),β(·),δh

∑
i∈Str

(
τ̂BJSi,h − α(Ei, Xi)− β(g(i), Xi)− δ⊤hW

e
g,h

)2 1

π̂(Ei−Bi)|g(i),Xi

,

which is analogous to one we propose in situations where part (b) of Assumption B.3 holds. A straightforward
extension of the previous analysis shows that the limit is now equal to(∑

g

π̂gΣg,h

)−1∑
g

π̂gΣg,h

(∑
x

π̂x|gδg,h(x)

)
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where

Σg,h :=
∑
x

π̂x|g
∑

a∈A(h0,h1)

V

W b+a
g,h − 1

|A(h0, h1)|
∑

l∈A(h0,h1)

W l
g,h

 .
In particular, now if either (a)

∑
x π̂x|gδg,h(x) = δh, or (b) Σg,h = Σh, we have that the resulting estimand is

either (a) equal to δh, or (b) equal to

(∑
π̂g

)−1∑
π̂g

(∑
x

π̂x|g(x)δg,h(x)

)
.

Weighted regression: We now briefly discuss the differences in the analysis for the environments in which
part (b) of Assumption B.3 holds. The weighted version of the OLS problem has the following form(
δ̂
WOLS

h , α̂WOLS
h (·), β̂WOLS

h (·)
)
:= arg min

α(·),β(·),δh

∑
i∈Str

(
τ̂BJSi,h − α(Ei, Xi)− β(g(i), Xi)− δ⊤hW

e
g,h

)2 1

π̂(Ei−Bi)|g(i),Xi

This construction implicitly assumes that π̂(Ei−Bi)|g(i),Xi
> 0 for all i—a random event. We define the corre-

sponding indicator variables

A := 1

{
min

g∈G,x,a∈A(h0,h1)
π̂a|g,x > 0

}
.

Following the same path as in the previous case, we wish to conduct the analysis fixing {Xi}ni=1 and A = 1. How-
ever, becauseEi is causally related toWg,t the second condition affects the distribution of {Wg,t}t, shifting its first
two moments, which were relevant for our computations. However, as long as 1− E[A|{Xi}i] = op

(∑
g∈G π̂

2
g

)
,

we can rely on the following CS bound:

|E[f({Xi}i∈g, {Wg,t}t|A = 1, {Xi}i]− E[f({Xi}i∈g, {Wg,t}t)|{Xi}i]| ≤√
V[f({Xi}i∈g, {Wg,t}t|{Xi}ni=1]E[A|{Xi}i](1− E[A|{Xi}i])

E[A|{Xi}i]
=

op

√V[f({Xi}i∈g, {Wg,t}t|{Xi}ni=1]
∑
g

π̂2
g

 .

It follows that under mild technical conditions (e.g., boundedness of all relevant random variables), fixing A = 1

does not change the relevant moments of Wg,t enough to affect the first-order analysis. In particular, one can
proceed analogously to the previous case, establishing an analog of Theorem 1.

B.4.4 Normalization

Our empirical analysis sometimes normalizes the estimated τ̂BJSi by the average imputed outcome. In particular,
for each (h, e, x, g) we construct

Ŷh,e,x,g :=

∑
i∈Str:Ei=e,Xi=x,g(i)=g

(α̂i + λ̂g(i),t(Xi))

ntrg (e, x)
,

where ntrg (e, x) :=
∑
i∈Str

1{Ei = e,Xi = x, g(i) = g}, and then define for each i ∈ Str

τ̃BJSi,h :=
τ̂BJSi,h

Ŷh,Ei,Xi,g(i)

.
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Remark B.4. Our theoretical and statistical analysis is conducted for τ̂BJSi,h , ignoring the normalization. To
address the normalization, one needs to restate Assumption B.5 for the normalized version of τeh(ω). Statistical
guarantees analogous to those we establish below would hold for the normalized coefficients as long as the
number of units per group is sufficiently large. In particular, group-level clustering would still deliver correct
inference.

B.5 Alternative analysis
The analysis in this section relied on random variation in Wg to establish causal claims. However, a large body
of applied work, particularly in policy evaluation, focuses on conditional analysis that fixes the path of Wg and
instead relies on unobserved shocks. For instance, this is the case for the standard DiD analysis. This subsection
briefly discusses how we can incorporate such analysis into our framework.

If we fixWg, our previous probability model does not allow for group-level uncertainty. To incorporate such
uncertainty, we assume that in addition to Wg—the observed policy shock—the potential outcomes are also
affected by the unobserved policy shocks Ug. We extend Assumption B.1 and now assume

(E,X, YB+Amin
(·), . . . , YB+Amax

(·)) ⊥⊥ (Wg, Ug),

where, as before, each variable can have a g-specific distribution. The measurement model remains the same as
in Assumption B.2, but now incorporates dependence on (u):

Yt(w, u) = α(w, u) + λg,t(X,w, u) +
∑
h≥0

τeh(w, u){E(w, u)− t = h}{E(w, u) = e}+ εt(w, u),

E[εt(w, u)|α(w, u), τ (w, u), X,E] = 0.

The next restriction extends part (a) of Assumption B.3:

E(w, u) ≡ E.

We can also consider a straightforward extension of part (b) of Assumption B.3; it does not affect the discussion
below much, and we focus on a simpler case for brevity.

These restrictions guarantee

τeg,h(x,w, u) := E[τeh(w, u)|X = x,E = e,Wg = w,Ug = u] = E[τeh(w, u)|X = x,E = e].

We assume that Ug has the same structure asWg, and thus we can write

Ug = (Ug,1, . . . , Ug,Tmax).

We use this structure to extend Assumption B.5:

τeh(w, u) = βeh +

h+1∑
j=0

β1,j,hue+h−j +

h+1∑
j=0

δj,hwe+h−j ,

where βeh, β1,j,h, and δj,h are g-specific random variables. So far, this model is a generalization of the one we had
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previously, but next, we impose restrictions that are more demanding than before. In particular, we assume

E[βeh|X = x,E = e] = β0,1,g,h(x) + β0,2,h(x, e),

E[β1,j,h|X = x,E = e] = β1,j,h(x),

E[δj,h|X = x,E = x] = δg,j,h(x).

Here, the last restriction is the same as we imposed before, and the first two are new. Finally, we restrict the
conditional distribution of Ug,t and assume

Ug,t = ag + bt + νg,t, E[νg,t|Wg] = 0.

Using all these restrictions, we arrive at the following model:

τeg,h(x,Wg, Ug) = β̃1,g,h(x) + β̃2,h(x, e) +

h+1∑
j=0

δg,j,h(x)Wg,e+h−j + ν̃g,e+h, E[ν̃g,e+h|Wg] = 0, (B.4)

where

β̃1,g,h(x) := β0,1,g,h(x) +

h+1∑
j=0

β1,j,h(x)ag,

β̃2,h(x, e) = β0,2,h(x, e) +

h+1∑
j=0

β1,j,h(x)be+h−j ,

ν̃g,e+h :=

h+1∑
j=0

β1,j,h(x)νg,e+h−j .

Compared with the model we had before, this one has a specific structure of the error term, which was not
previously present. It is directly related to the one considered by De Chaisemartin and d’Haultfoeuille (2020).

To understand identification and estimation in this model, we consider a simple example with three periods,
which is the same as in the main text but now allows for covariates. Suppose thatWg takes three possible values,
Wg ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 1)}. Consider the following difference:

∆τ2g,0(x,Wg, Ug) = τ2g,0(x,Wg, Ug)− τ1g,0(x,Wg, Ug) = ∆β̃2,h(x) +

1∑
j=0

δg,j,0(x)∆Wg,2−j +∆ν̃g,2.

Using the restriction on ∆ν̃g,2 we get the following:

δ̂0(x) :=

∑
g∈G ∆τ2g,0(x,Wg, Ug){∆Wg,2 = 1,∆Wg,1 = 0}∑

g∈G{∆Wg,2 = 1,∆Wg,1 = 0}
−∑

g∈G ∆τ2g,0(x,Wg, Ug){∆Wg,2 = 0,∆Wg,1 = 0}∑
g∈G{∆Wg,2 = 0,∆Wg,1 = 0}

=∑
g∈G δg,0,0(x){∆Wg,2 = 1,∆Wg,1 = 0}∑

g∈G{∆Wg,2 = 1,∆Wg,1 = 0}
+Op

(
1√
|G|

)
,
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and similarly

δ̂1(x) :=

∑
g∈G ∆τ2g,0(x,Wg, Ug){∆Wg,2 = 0,∆Wg,1 = 1}∑

g∈G{∆Wg,2 = 0,∆Wg,1 = 1}
−∑

g∈G ∆τ2g,0(x,Wg, Ug){∆Wg,2 = 0,∆Wg,1 = 0}∑
g∈G{∆Wg,2 = 0,∆Wg,1 = 0}

=∑
g∈G δg,1,0(x){∆Wg,2 = 0,∆Wg,1 = 1}∑

g∈G{∆Wg,2 = 0,∆Wg,1 = 1}
+Op

(
1

|G|

)
.

As a result, we can construct an estimator for a particular weighted average of the underlying coefficients. Note
that the weights are random, and their expectation is not generally identified. It is also easy to see that this
estimator is equivalent to estimating (B.4) by OLS with two-way fixed effects using data on G groups and is
also equivalent to the estimator we considered previously in (B.2). This result is directly connected to the ideas
developed by Arkhangelsky et al. (2024a).

Remark B.5. The discussion in this section illustrates the benefits and costs of the conditional approach. On
the positive side, we do not need to restrict the marginal distribution of Wg, i.e., we have not used an analog
of Assumption B.6. However, instead, we assumed the presence of unobserved shocks with a two-way structure
and mean-independent errors, as well as more substantial restrictions on heterogeneity. Finally, in terms of the
estimand, we got a convex combination of average effects, but the weights are different for different coefficients,
which makes the interpretation more challenging.

B.6 Validation
Our empirical analysis relies on the first part of Assumption B.3. To validate this assumption, we conduct em-
pirical analysis based on the model described in this section. For each t, g, w, b define the following conditional
probability (hazard function):

πg,t(w, b) := E[E(w) = t|E(w) > t− 1, B = b].

We assume that this probability has the following functional form:

πg,t(w, b) = π0
g,t(b) + βg(t− b)wt−1.

This specification does not restrict the baseline variation in the hazard rate without policy. Still, it assumes that
the potential probability only depends on the current (at t − 1) level of policy, and this effect is constant across
time, though it varies across age. Define the following two variables:

∆πg,t(w, b) := πg,t(w, b)− πg,t−1(w, b− 1),

∆π0
g,t(b) := π0

g,t(b)− π0
g,t−1(b− 1).

Using this definition, we arrive at the following equation:

∆πg,t(Wg, b) = ∆π0
g,t(b) + βg(t− b)∆Wg,t−1.
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This implies that under Assumption B.6 we have the following:

∑
g∈G ∆πg,t(Wg, t− b)

(
∆Wg,t−1 − 1

G
∑
g∈G ∆Wg,t−1

)
∑
g∈G

(
∆Wg,t−1 − 1

G
∑
g∈G ∆Wg,t−1

)2 =
∑
g∈G

βg(t− b)ωg,t +Op

√∑
g∈G

ω2
g,t

 ,

whereωg,t := V[∆Wg,t−1]∑
g∈G V[∆Wg,t−1]

. If none of the group-specific variances dominates, thenwe haveOp
(√∑

g∈G ω
2
g,t

)
=

Op

(
1√
|G|

)
. This implies that the OLS regression of the group-level outcome ∆πg,t(Wg, x̃, t − b) on the policy

differences is a consistent estimator for a weighted average effect of the policy. In practice, we do not observe
the probability πg,t(w, b) directly; instead, we use its unbiased estimator.

B.7 Examples
We now return to examples from Section 2.5 and discuss them in more detail.

B.7.1 One- vs. two-step estimation

Recall that we consider estimating the following equation

Yi,t = αi + λg,t +
∑
h≥0

(βh + δhWg)1{Ei − t = h}+ ϵi,t

assuming that Wg is binary and is randomly assigned and t = 0, 1, 2. For simplicity, we difference out the unit
fixed effects by subtracting the outcomes in the first period, which leads to the following equation

Ỹi,t = λ̃g,t +
∑
h≥0

(βh + δhWg)1{t− Ei = h}+ ϵ̃i,t,

where Ỹi,t := Yi,t − Yi,0 for t = 1, 2, and λ̃g,t and ϵ̃i,t are defined analogously. We consider the population limit
of this problem; that is, we solve for

(
{λOLSg,t }g,t, {βOLSh , δOLSh }1h=0

)
= arg min

{λg,t}g,t,{βh,δh}1
h=0

∑
g∈G

2∑
t=1

E


Ỹt − λg,t −

∑
h≥0

(βh + δhWg)1{t− E = h}

2


First, suppose that part (a) of Assumption (3) holds. Then, by using the FWL theorem multiple times, we get the
following:

{δOLSh }1h=0 = arg min
{δh}1

h=0

∑
g∈G

2∑
t=1

E


τ t−hg,h (Wg, E)1{t− E = h} −

∑
h≥0

δh

(
Wg −

1

2

)
(1{t− E = h} − πg,t,h)

2
 ,

where πg,t,h := Eg[1{t− E = h}] and τ t−hg,h (Wg, E) := Eg[τ t−hh |E]. BecauseWg is binary we have

τ t−hg,h (Wg, E) = βt−hg,h (E) + δt−hg,h (E)Wg = βt−hg,h (E) +
1

2
δt−hg,h (E) + δt−hg,h (E)Wg

(
Wg −

1

2

)
.
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Applying the FWL result once again, we get

{δOLSh }1h=0 = arg min
{δh}1

h=0

∑
g∈G

2∑
t=1

E


∑
h≥0

(
δt−hg,h (E)1{t− E = h} − δh (1{t− E = h} − πg,t,h)

)2
⇒

(
δOLS0

δOLS1

)
=

∑
g∈G

(Vg,1 + Vg,2)

−1∑
g∈G

E[Vg,1(E)δ1g(E) + Vg,2(E)δ2g(E)].

where

Vg,t(E) :=

(
1{t− E = 0}(1{t− E = 0} − πg,t,0)

1{t− E = 1}(1{t− E = 1} − πg,t,1)

)⊤(
1{t− E = 0}(1{t− E = 0} − πg,t,0)

1{t− E = 1}(1{t− E = 1} − πg,t,1)

)

δtg(E) :=

(
δtg,0(E)

δt−1
g,1 (E)

)
, Vg,t := E[Vg,t(E)]

This illustrates that, in general, the OLS coefficients suffer from the contamination bias introduced by Goldsmith-
Pinkham et al. (2024). Note that this is the case even if we shut down the heterogeneity in the event times, making
δtg(E) = δtg. This still leaves heterogeneity across groups, which matters even thoughWg is i.i.d. across groups.

We now turn to the second part of Assumption 3. To illustrate the point in the most straightforward setting,
we focus on a single period; that is, we consider estimating the following linear equation

Ỹi,t = λ̃g + (β0 + δ0Wg)1{Ei = 1}+ ϵ̃i,t,

where Ỹi,t := Yi,t − Yi,0 and t = 1.24 Focusing on the population problem, we have

(
{λOLSg }g, βOLS , δOLS

)
= arg min

{λg}g,β,δ

∑
g∈G

E
[(
Ỹt − λg − (β + δWg)1{E = 1}

)2]

Applying the FWL theorem, we get that this is equivalent to estimating

(
βOLS , δOLS

)
= argmin

β,δ

∑
g∈G

E
[(
τ0g,0(Wg)(1{t− E = h} − πg,1,0)− (β + δWg)(1{E = 1} − πg,1,0)

)2]
,

where we used the fact that τ00 (w) is independent of E(w). The last problem is thus equivalent to the following
one (

βOLS , δOLS
)
= argmin

β,δ

∑
g∈G

E
[(
τ0g,0(Wg)− (β + δWg)

)2
ωg(Wg)

]
,

where ωg(Wg) := V[1{E = 1}|Wg]. Using the FWL results again, we get that

δOLS :=

∑
g E[ωg(Wg)τ

0
g,0(Wg)(Wg − µ)]∑

g E[ωg(Wg)(Wg − µ)2]
=

∑
g β

0
g,0E[ωg(Wg)(Wg − µ)]∑

g E[ωg(Wg)(Wg − µ)2]
+

∑
g δ

0
g,0E[ωg(Wg)Wg(Wg − µ)]∑
g E[ωg(Wg)(Wg − µ)2]

,

where µ :=
∑

g E[ωg(Wg)Wg]∑
g E[ωg(Wg)]

. The g-specific weight E[ωg(Wg)(Wg − µ)] is in general not equal to zero (these
weights sum up to zero across all groups, though), and thus the OLS estimator is biased even if δ0g,0 is constant
across g. This result should not be surprising because the OLS problem that we got uses weights that depend on

24With two periods, we will also have the contamination bias in addition to the bias we discuss below.
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Wg thus shifting the distribution ofWg away from the uniform.

B.7.2 Unit-level policy variation

Next, we consider the model with unit-level variation in policy:

Ỹi,t = λ̃t(Wi) +
∑
h≥0

(βh + δhWi)1{t− Ei = h}+ ϵ̃i,t.

Again, focusing on the limit problem, we have the following optimization problem:

({λOLSt (·)}2t=1, {(βOLSh , δOLSh )}1h=0) =

arg min
{λt(·)}2

t=1,{(βh,δh)}1
h=0

∑
t

E[(Yt − λ̃t(Wi)−
∑
h≥0

(βh + δhW )1{t− E = h})2]

Applying the FWL theorem, we get that this problem is equivalent to the following one:

({(βOLSh , δOLSh )}1h=0) =

arg min
{{(βh,δh)}1

h=0

∑
t

E


∑
h≥0

τ t−hh (W,E)1{t− E = h} −
∑
h≥0

(βh + δhW )(1{t− E = h} − πt,h(W ))

2
 .

where πt,h(W )) := E[1{t− E = h}|W ]. If part (a) of Assumption (3) holds, then the last problem is equivalent
to

({(δOLSh )1h=0) = arg min
{(δh)1h=0

∑
t

E


∑
h≥0

(δt−hh (E)1{t− E = h} − δhW (1{t− E = h} − πt,h)

2
 ,

which, using similar computations as in the previous section, implies(
δOLS0

δOLS1

)
= ((V1 + V2))

−1
∑
g∈G

E[V1(E)δ1(E) + V2(E)δ2(E)],

where all components are defined analogously to our previous analysis. Even if E is not correlated with the
heterogeneity in coefficients, we still get contamination bias because of the variation over time.

Alternatively, if part(b) of Assumption 3 holds, then we get the following problem:

(βOLS , δOLS) = arg min
(βOLS ,δOLS)

∑
t

E[(τ t(W )− β − δW ))⊤Vt(W )(τ t(W )− β − δW ))],

where (βOLS)⊤ := (βOLS0 , βOLS1 ), δOLS is defined analogously, and (τ t(W ))⊤ := (τ10 (W ), τ01 (W )), and we define
βt and δt analogously. We also defined

Vt(W ) := V [1{t− E = 0},1{t− E = 1}|W ]
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Solving this problem, we get the following:

δOLS =

(
2∑
t=1

Vt(1)

)−1(∑
t

Vt(1)δ
t

)
+

(
2∑
t=1

Vt(1)

)−1(∑
t

Vt(1)
(
βt − βOLS

))
,

where βOLS =
(∑2

t=1 Vt(0)
)−1 (∑

t Vt(0)β
t
)
. As before, there is a selection bias and a contamination bias

caused by heterogeneity across periods.

B.7.3 Causal analysis vs. projections

Our computations in the previous section show that if we only use a single period rather than two periods, then
the resulting coefficients have a causal interpretation. This section illustrates the same phenomenon using a more
straightforward model.

Consider a statistical model where

Yi = τiXi + εi, E[εi|Xi,Wi] = 0,

and researchers want to project τi on binaryWi ∈ {0, 1}, i.e., estimate the coefficient in the regression

τi = β + δWi + νi

As long as Xi ̸= 0 almost surely, we can construct τ̂i := Yi

Xi
for all units and project it on Wi. This two-step

procedure is conceptually analogous to our proposal. Alternatively, we can directly estimate a single linear
equation

Yi = α+ βXi + δXiWi + ε̃i,

where we substituted τi with its projection on Wi. The problem with this approach is that the new error ε̃i
can be systematically correlated with Xi, thus potentially rendering the whole analysis invalid. This issue arises
regardless of the nature of the variation in Wi, which can be randomly assigned. See Muris and Wacker (2022)
for a detailed analysis of a more general version of this problem.

The situation becomes more nuanced if we postulate a causal model for τi, and write τi(Wi). In this case,
if Wi is randomly assigned, and neither Xi nor εi is causally affected by Wi, then the one-step OLS estimator
converges to a weighted average effect

E
[
(τi(1)− τi(0))

X2
i

E[X2
i ]

]
.

This effect differs from the standard average treatment effect from the two-step regression, but it is still a mean-
ingful causal quantity.
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C Household Labor Supply and Childcare Decisions Model
This section presents a simple household model to illustrate the economic intuition behind
the relationship between the child penalty and childcare provision in Figure IV, discussed
in Section 4.3. Let U(c, k) represent the joint utility function of the household, where the
household enjoys consumption c and child-rearing time k. For simplicity, we assume both
fathers f and mothers m have the same utility function. The joint household maximization
problem can be expressed as:

max
c,k

U(c, k) = u(cm, km) + u(cf , kf )

subject to the budget constraint:

p · d+ cm + cf = wm · hm + hf

where p is the price of outsourcing child-rearing time d, hi are market working hours at a wage
wm for mothers and wage for fathers at a wage rate we normalize to be the numeraire wf = 1.
Each parent can split their total time of T = 1 between market work and child-rearing in the
following way:

1 = hi + ki.

Finally, someone needs to care for the child daily for a total time of T = 1, which can be
outsourced by choosing d. Finally, someone needs to do home production for a total time of
h̄, which results in the following household time constraint:

1 + h̄ = km + kf + d.

This simple model produces a heterogeneous relationship between labor supply and the
cost of outsourcing childcare time, as Figure C.1 shows.

73



Figure C.1: Time allocation to childcare and labor supply versus childcare cost

Notes: This figure presents the XX.
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